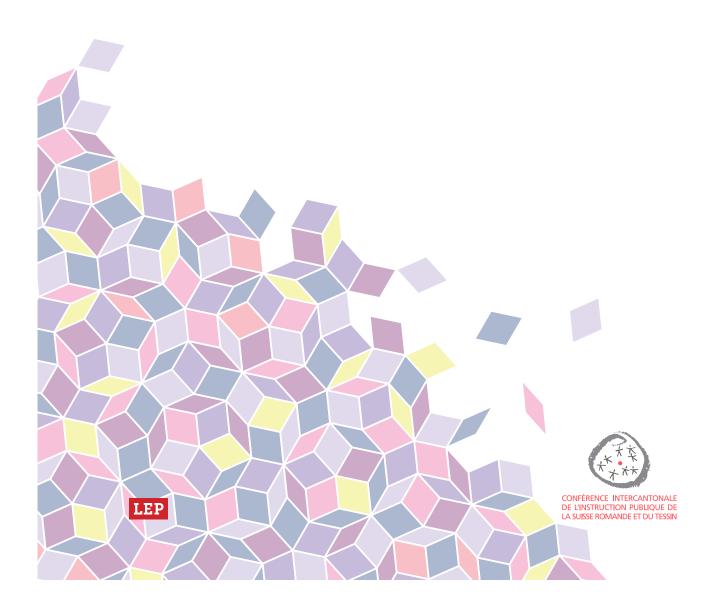
Mathématiques 9-10-11

Aide-mémoire

Savoirs, savoir-faire et stratégies



Mathématiques 9-10-11

Aide-mémoire

Savoirs, savoir-faire et stratégies

Ivan Corminboeuf Michel Mante Hervé Schild

Remerciements

Pour cet ouvrage, nous remercions de leur engagement:

Les rédacteurs, Ivan Corminboeuf, Michel Mante et Hervé Schild

L'expert externe, Michel Brêchet

Le sous-groupe COPED, Silvia Fankhauser, Alain Ramelet et François Sulliger

Les coordinateurs, Raymond Clavel et Alain Emery

Toutes les personnes ayant participé à l'élaboration de l'édition 2011 de l'*Aide-mémoire*, dont certains contenus ont servi de base ou ont été repris pour ce nouvel ouvrage

Les commissions et conférences intercantonales impliquées, ainsi que les cantons de Berne, Fribourg, Genève, Jura, Neuchâtel, Valais et Vaud.

Crédits

© David Bellot, svg-cards.sourceforge.net: 39

© Editions LEP, Objectif Vie, Le Mont-sur-Lausanne: 59d

© Office fédéral de topographie swisstopo (BA110186): 59g

Conception et réalisation: LEP, Loisirs et Pédagogie SA Relecture: Catherine Vallat, Moutier

Edition 2019

© CIIP Conférence intercantonale de l'instruction publique de la Suisse romande et du Tessin, 2019

© LEP Editions Loisirs et Pédagogie SA, 2019 Le Mont-sur-Lausanne

ISBN 978-2-606-01711-8 LEP 936012A1

Imprimé en Suisse I 0219 28 STA Tous droits réservés pour tous les pays

www.editionslep.ch

Préambule

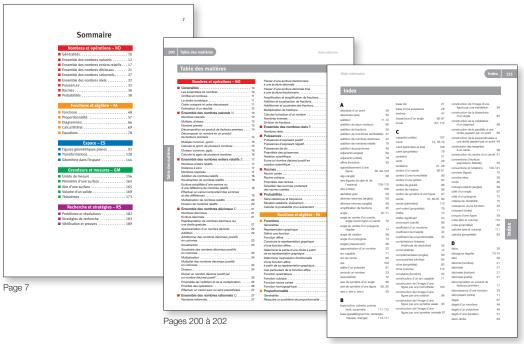
Ton Aide-mémoire présente les termes, définitions, notations et notions théoriques ainsi qu'un certain nombre de savoir-faire abordés dans la collection Mathématiques 9-10-11.

C'est un ouvrage de référence auquel tu peux accéder, lorsque tu en éprouves le besoin. C'est par exemple le cas:

- pour te remémorer une définition ou un savoir-faire;
- lorsqu'un travail à effectuer nécessite de revenir sur un aspect théorique que tu n'as pas encore parfaitement assimilé ou un savoir-faire que tu ne maîtrises pas complètement.

Tu disposes d'un sommaire, d'une table des matières et d'un index alphabétique pour accéder plus facilement à l'information recherchée.

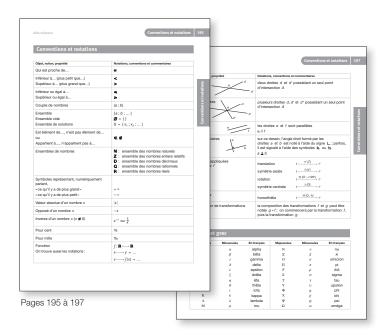
En utilisant les pages quadrillées prévues à cet effet, tu peux enrichir ton *Aide-mémoire* notamment avec des explications complémentaires, des exemples ou des remarques.

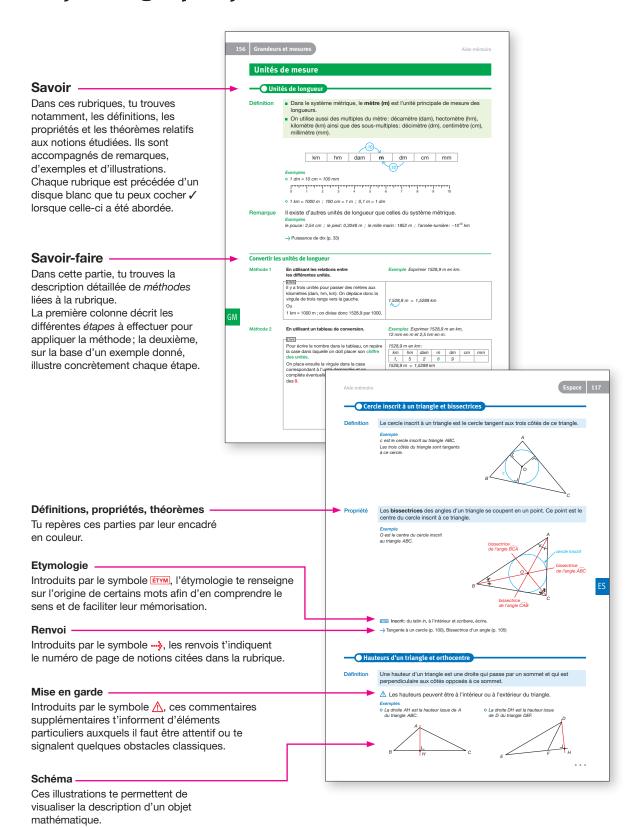

Les rédacteurs

Les pages de l'Aide-mémoire

Sommaire, table des matières, index

Ces différentes parties sont à ta disposition pour te faciliter l'accès aux informations recherchées.




Pages 203 à 207

Conventions et notations

Dans cette partie, tu trouves l'ensemble des conventions et notations utilisées dans les ouvrages de *Mathématiques 9-10-11*.

Repères graphiques

Extraits du Plan d'études romand

Visées prioritaires MSN

Se représenter, problématiser et modéliser des situations et résoudre des problèmes en construisant et en mobilisant des notions, des concepts, des démarches et des raisonnements propres aux *Mathématiques* et aux *Sciences de la nature* dans les champs des phénomènes naturels et techniques, du vivant et de l'environnement, ainsi que des nombres et de l'espace.

Mathématiques et sciences de la nature (MSN)

Nombres et opérations

Poser et résoudre des problèmes pour construire et structurer des représentations des nombres réels

Résoudre des problèmes numériques

Résolution de problèmes numériques en lien avec les ensembles de nombres travaillés, l'écriture de ces nombres et les opérations étudiées.

Fonctions et algèbre

Résoudre des problèmes numériques et algébriques

Résolution de problèmes en lien avec les notions étudiées (fonctions, diagrammes, expressions algébriques et équations).

Résolution de problèmes de proportionnalité.

Modéliser des phénomènes naturels, techniques, sociaux ou des situations mathématiques

Espace

Poser et résoudre des problèmes pour modéliser le plan et l'espace

Résolution de problèmes géométriques en lien avec les figures et les transformations étudiées.

Grandeurs et mesures

Mobiliser la mesure pour comparer des grandeurs

Résolution de problèmes de mesurage en lien avec les grandeurs et les théorèmes étudiés.

Sommaire

Index 203

Nombres et opérations
Généralités10Ensemble des nombres naturels12Ensemble des nombres entiers relatifs17Ensemble des nombres décimaux21Ensemble des nombres rationnels27Ensemble des nombres réels32Puissances32Racines36Probabilités38
Fonctions et algèbre
Fonctions46Proportionnalité55Diagrammes64Calcul littéral67Equations76
Espace
Figures géométriques planes 90
Transformations géométriques
Transformations géométriques126
Transformations géométriques
Transformations géométriques
Transformations géométriques
Transformations géométriques. 126 Géométrie dans l'espace. 142 Grandeurs et mesures Unités de mesure. 156 Périmètre d'une surface 163 Aire d'une surface 165 Volume d'un solide 169 Théorèmes 173 Recherche et stratégies Problèmes et résolutions 182 Stratégies de recherche 183 Vérification 189

NO

FA

ES

GM

RS

Nombres et opérations


- **■** Généralités
- Ensemble des nombres naturels \mathbb{N}
- Ensemble des nombres entiers relatifs \mathbb{Z}
- Ensemble des nombres décimaux D
- Ensemble des nombres rationnels Q
- Ensemble des nombres réels R
- Puissances
- Racines
- Probabilités

Généralités

Ensembles de nombres

Ensemble de nombres	Notation / Origine	Exemples	Représentation sur une droite
■ Nombres naturels ou entiers naturels p. 12	N de l'italien <i>natural</i> e	0;1;3;5;10;16;	0 1 3
■ Nombres entiers relatifs	Z de l'allemand Zahl (nombre)	;-13;-2;0;1;3; 4;19;	-2 0 1 3)
Nombres décimaux	D du français <i>décimal</i>	; -7,65; -1,4; 0; 1; $\frac{17}{10}$; 3,2; 5,65; 18,421;	-1,4 0 1 10 3,2 5,65
Nombres rationnels	Q de l'italien <i>quotiente</i>	; -10 ; $-\frac{2}{3}$; -0.2 ; 0; 1; $\frac{5}{6}$; 234;	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
■ Nombres réels → p. 32	R de l'allemand <i>Real</i>	; -19; $-\frac{7}{3}$; -2; $-\sqrt{2}$; 0; 1; π ; $\sqrt{20}$; 20,4;	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Le schéma suivant montre toutes les inclusions entre ces ensembles de nombres.

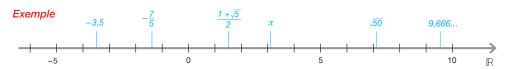
Chiffres et nombres

Définitions

- Les chiffres sont des symboles servant à écrire les nombres dans un système de numération donné.
- Dans notre système de numération décimale, les dix chiffres sont: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
- Les **nombres** sont écrits à l'aide d'un ou de plusieurs chiffres.

Remarque

Suivant le contexte, un chiffre peut être aussi un nombre.


Exemple Lorsqu'on dit qu'il y a 5 personnes dans une salle, 5 est un nombre à un chiffre.

Chiffre: de l'arabe sifr, zéro. Nombre: du latin numerus, nombre, quantité.

Droite numérique

Définition

Une **droite numérique** est une droite possédant un sens (de gauche à droite ou de bas en haut), des graduations régulières et une origine. Chaque point est repéré par un nombre. Chaque nombre réel correspond à un point de cette droite.

Ensembles de nombres (p. 10), Nombres réels (p. 32)

Ordre croissant et ordre décroissant

Définitions

 Ordonner des nombres en ordre croissant signifie qu'on les range du plus petit au plus grand. Pour cela, on utilise le signe < qui signifie «plus petit que».

Exemple
$$-1 < \frac{1}{2} < 2 < 5,04 < 12$$

 Ordonner des nombres en ordre décroissant signifie qu'on les range du plus grand au plus petit. Pour cela, on utilise le signe > qui signifie « plus grand que ».

Exemple
$$127.5 > 8 > 0.0058 > -\frac{3}{4} > -10$$

Propriété

Le positionnement des nombres sur la droite numérique permet leur comparaison. Lorsque la droite est horizontale:

- un nombre est plus petit qu'un autre lorsqu'il est à sa gauche;
- un nombre est plus grand qu'un autre lorsqu'il est à sa droite.

Exemple

Ordre croissant: -6 < -2 < 0 < 1 < 7

Estimation d'un résultat

Définition

Estimer le résultat d'un calcul, c'est trouver mentalement une valeur approchée de ce résultat. Pour cela, on remplace chaque nombre du calcul par un autre qui lui est «proche» et qui permette d'effectuer le calcul mentalement.

Exemples

$$9,6 + 125,7 - 19,4 = ?$$
 $37,5 \cdot 148,2 = ?$
 $128,7 : 2,8 = ?$

 Estimation:
 $10 + 130 - 20 = 120$
 $40 \cdot 150 = 6000$
 $120 : 3 = 40$

Remarque

Une estimation peut se faire de plusieurs manières et avec un degré de précision variable selon les nombres en jeu et le contexte.

L'estimation d'un résultat doit se calculer mentalement. Même lorsqu'on effectue un calcul à l'aide d'une calculatrice, il est important d'effectuer une estimation pour vérifier l'ordre de grandeur du résultat obtenu à l'aide de la calculatrice.

Ensemble des nombres naturels N

Nombres naturels

Définitions

- Un nombre naturel est un nombre entier supérieur ou égal à 0.
- On utilise la lettre N pour désigner l'ensemble de tous les nombres naturels. $\mathbb{N} = \{0; 1; 2; 3; 4; 5; ...\}$

Multiple, diviseur

Définitions

a et b étant deux nombres naturels, on dit que a est un multiple de b s'il existe un nombre naturel c tel que $a = b \cdot c$.

On dit aussi que **b** est un diviseur de **a** ou que **a** est divisible par **b**.

Exemple

24 est un multiple de 6, car $24 = 6 \cdot 4$.

On dit aussi que 6 est un diviseur de 24 ou que 24 est divisible par 6.

- Conséquences Tout nombre naturel est un multiple de 1.
 - 1 est un diviseur de tous les nombres naturels.
 - 0 est un multiple de tous les nombres naturels.

Notation

L'ensemble des multiples d'un nombre n est noté M_n . L'ensemble des diviseurs d'un nombre n est noté D_n .

L'ensemble des multiples de 12:
$$M_{12} = \{0; 12; 24; 36; 48; ...\}$$
. $0.12; 1.12; 2.12; 3.12; 4.12$

 $D_{12} = \{\,1\,;2\,;3\,;4\,;6\,;12\,\}.$ L'ensemble des diviseurs de 12:

Critères de divisibilité

Propriétés

Un nombre naturel est divisible par:

- 2 s'il se termine par 0; 2; 4; 6 ou 8 (on dit aussi que c'est un nombre pair);
- 3 si la somme de ses chiffres est divisible par 3;
- 4 si le nombre formé par ses deux derniers chiffres est divisible par 4 (notamment s'il se termine par 00);
- 5 s'il se termine par 0 ou 5;
- 9 si la somme de ses chiffres est divisible par 9;
- 10 s'il se termine par 0;
- 25 s'il se termine par 00 ; 25 ; 50 ou 75.

Exemples

1534 est divisible par 2 puisqu'il se termine par 4.

897 est divisible par 3 puisque la somme de ses chiffres est divisible par 3.

136 est divisible par 4 car 36 est divisible par 4.

10035 est divisible par 5 car il se termine par 5.

81 est divisible par 9 car la somme de ses chiffres est divisible par 9.

2550830 est divisible par 10 car il se termine par 0.

6975 est divisible par 25 puisqu'il se termine par 75.

Nombre premier

Définition

Un nombre premier est un nombre naturel qui a exactement deux diviseurs : 1 et lui-même.

Exemple 2;3;5;7;11 sont des nombres premiers.

Remarques

- Il y a une infinité de nombres premiers.
- 1 n'est pas un nombre premier, car il n'a qu'un seul diviseur.
- 2 est l'unique nombre pair qui est premier.

Liste des nombres premiers inférieurs à 1000

Liste des nombres premiers inferieurs à 1000										
2	101	211	307	401	503	601	701	809	907	
3	103	223	311	409	509	607	709	811	911	
5	107	227	313	419	521	613	719	821	919	
7	109	229	317	421	523	617	727	823	929	
11	113	233	331	431	541	619	733	827	937	
13	127	239	337	433	547	631	739	829	941	
17	131	241	347	439	557	641	743	839	947	
19	137	251	349	443	563	643	751	853	953	
23	139	257	353	449	569	647	757	857	967	
29	149	263	359	457	571	653	761	859	971	
31	151	269	367	461	577	659	769	863	977	
37	157	271	373	463	587	661	773	877	983	
41	163	277	379	467	593	673	787	881	991	
43	167	281	383	479	599	677	797	883	997	
47	173	283	389	487		683		887		
53	179	293	397	491		691				
59	181			499						
61	191									
67	193									
71	197									
73	199									

Ensembles de nombres (p. 10), Nombres naturels (p. 12), Multiple, diviseur (p. 12)

Décomposition en produit de facteurs premiers

Propriété

Tout nombre naturel se décompose de manière unique en un **produit** de facteurs premiers.

Exemples
$$24 = 2 \cdot 2 \cdot 2 \cdot 3 = 2^3 \cdot 3$$

$$126 = 2 \cdot 3 \cdot 3 \cdot 7 = 2 \cdot 3^2 \cdot 7$$

Ensembles de nombres (p. 10), Nombres naturels (p. 12)

Décomposer un nombre en un produit de facteurs premiers

Méthode 1 De

De proche en proche.

Exemple Décomposer 72 et 150 en un produit de facteurs premiers.

ÉTAPE 1	on an product do raotod	
Décomposer le nombre en un produit de deux facteurs qui ne sont pas forcément des nombres premiers.	72 = 8 · 9	150 = 15 · 10
Décomposer chacun des facteurs en un produit de facteurs.	72 = 2 · 4 · 3 · 3	150 = 3 · 5 · 2 · 5
S'arrêter lorsque tous les facteurs de la décomposition sont des nombres premiers.	$72 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3$	150 = 2 · 3 · 5 · 5
Recourir (si nécessaire) aux puissances pour écrire le résultat.	$72 = 2^3 \cdot 3^2$	$150 = 2 \cdot 3 \cdot 5^2$

Méthode 2

En divisant par des nombres premiers.

Exemple Décomposer 504 en un produit de facteurs premiers.

ÉTAPE 1		
Chercher un nombre premier qui est un diviseur	504	2
du nombre à décomposer. Pour cela tester les premiers nombres premiers : 2 ; 3 ; 5 ; 7 ; 11 ;	252	2
ÉTAPE 2	126	2
Diviser le nombre à décomposer par ce nombre	63	3
premier. Puis, recommencer ce travail avec le quotient obtenu.	21	3
ÉTAPE 3	7	7
Continuer ainsi jusqu'à obtenir 1 comme quotient.	1	
Ecrire le produit de tous les nombres premiers utilisés, en recourant éventuellement aux puissances.	504 = 2	$\cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 7 = 2^3 \cdot 3^2 \cdot 7$

Multiple commun, ppmc

Définition

Un multiple commun de plusieurs nombres naturels est un multiple de chacun de ces nombres.

Exemple 72 est un multiple commun de 3; 9 et 12, car $72 = 3 \cdot 24$; $72 = 9 \cdot 8$; $72 = 12 \cdot 6$.

Propriété

Quels que soient les nombres naturels donnés, ils ont une infinité de multiples communs.

Exemple 72; $72 \cdot 2 = 144$; $72 \cdot 3 = 216$; ... sont des multiples communs de 3; 9 et 12.

⚠ Le plus grand multiple commun de plusieurs nombres naturels n'existe pas. Par contre, il existe un plus petit multiple commun.

Définition

Le **ppmc** de plusieurs nombres naturels est le **p**lus **p**etit **m**ultiple **c**ommun non nul $(\neq 0)$ de ces nombres.

Exemple 36 est le ppmc de 3 ; 9 et 12. On écrit : ppmc (3 ; 9 ; 12) = 36.

Ensembles de nombres (p. 10), Nombres naturels (p. 12), Multiple, diviseur (p. 12)

Calculer le ppmc de plusieurs nombres

Méthode 1

Ecrire les premiers multiples des nombres.

Exemple Calculer le ppmc de 10 ; 12 et 15.

Ecrire les premiers multiples de chacun de ces nombres.	$M_{10} = \{0; 10; 20; 30; 40; 50; 60; 70; 80;\}$ $M_{12} = \{0; 12; 24; 36; 48; 60; 72;\}$ $M_{15} = \{0; 15; 30; 45; 60; 75;\}$
Identifier le premier multiple commun non nul.	ppmc (10; 12; 15) = 60

Méthode 2

Utiliser la décomposition en produit de facteurs premiers.

Exemple Calculer le ppmc de 180 et 2625.

ÉTAPE 1				
Décomposer les nombres en un produit de facteurs premiers. p. 14	180 90 45 15 5 1	2 2 3 3 5	2625 525 105 21 7 1	5 5 3 7
Ecrire tous les facteurs premiers qui figurent au moins une fois dans l'une ou l'autre des décompositions avec leur plus grand exposant.		ux décompo , le plus gra , le plus gra , le plus gra	igurent au moins ositions sont: 2, and exposant es and exposant es and exposant es and exposant es	: 3 ; 5 et 7. t 2. t 2. t 3.
Effectuer le produit des nombres obtenus. C'est le ppmc des nombres choisis.	рртс	(180 ; 2625	$(1) = 2^2 \cdot 3^2 \cdot 5^3$	· 7 = 31500

Comment choisir parmi ces deux méthodes

On choisit de préférence la première méthode lorsque les premiers multiples sont faciles à calculer et qu'il n'est pas nécessaire d'en calculer beaucoup.

Diviseur commun, pgdc

Définition

Un diviseur commun de plusieurs nombres naturels est un diviseur de chacun de ces nombres.

Exemple 2 est un diviseur commun de 6 ; 24 et 172, car 2 divise chacun de ces trois nombres.

Propriété

Quels que soient les nombres naturels donnés, ils ont au moins un diviseur commun. En effet, 1 est un diviseur de tous les nombres.

Définition

Le **pgdc** de plusieurs nombres naturels est le **p**lus **g**rand **d**iviseur **c**ommun de ces nombres.

Exemple 5 est le pgdc de 10 ; 15 et 30. On écrit : pgdc (10 ; 15 ; 30) = 5.

Ensembles de nombres (p. 10), Nombres naturels (p. 12), Multiple, diviseur (p. 12)

Calculer le pgdc de plusieurs nombres

Méthode 1

Ecrire tous les diviseurs de chaque nombre.

Exemple Calculer le pgdc de 30 ; 12 et 18.

ÉTAPE 1	
Ecrire tous les diviseurs de chacun de ces nombres. Recherche de tous les diviseurs d'un nombre entier (p. 12).	$D_{30} = \{1; 2; 3; 5; 6; 10; 15; 30\}$ $D_{12} = \{1; 2; 3; 4; 6; 12\}$ $D_{18} = \{1; 2; 3; 6; 9; 18\}$
Identifier le plus grand diviseur commun.	pgdc (30 ; 12 ; 18) = 6

Méthode 2

Utiliser la décomposition en produit de facteurs premiers.

Exemple Calculer le pgdc de 9800 et 308.

ÉTAPE 1				
Décomposer les nombres en un produit de	9800	2	308	2
facteurs premiers.	4900	2	154	2
	2450	2	77	7
	1225	5	11	11
	245	5	1	
	49	7		
	7	7		
	1			
ÉTAPE 2	9800 = 2 ³	\cdot 5 ² \cdot 7 ²	308 = 2	² · 7 · 11
Ecrire tous les facteurs premiers qui figurent dans les deux décompositions avec leur plus petit exposant.	Les facteurs décomposit Pour 2, le p Pour 7, le p	tions sont : lus petit ex	2 et 7. posant est	2.
Effectuer le produit des nombres obtenus. C'est le pgdc des nombres choisis.	pgdc (9800	; 308) = 2	$2^2 \cdot 7 = 28$	

Comment choisir parmi ces deux méthodes

On choisit de préférence la première méthode lorsque les diviseurs de chacun des nombres sont faciles à calculer.

Ensemble des nombres entiers relatifs $\mathbb Z$

Nombres entiers relatifs

Définitions

- Un nombre entier relatif est un nombre entier muni d'un signe positif s'il est supérieur à zéro ou négatif s'il est inférieur à zéro.
- On utilise la lettre ℤ pour désigner l'ensemble de tous les nombres entiers relatifs.

$$\mathbb{Z} = \{ \dots; -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5; \dots \}$$

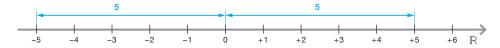
Exemples

(-27); 0; (+5) sont des nombres entiers relatifs.

(-27) est un nombre négatif et (+5) un nombre positif.

Remarque 0 est à la fois positif et négatif.

Distance à zéro


Définition

La distance à zéro d'un nombre *a* est la distance séparant sur la droite numérique ce nombre *a* de zéro.

Exemples

La distance à zéro de (-5) est 5.

La distance à zéro de (+5) est 5.

--- Droite numérique (p. 11)

Nombres opposés

Définition

Deux nombres sont opposés si leur somme est égale à zéro. Ils ont donc la même distance à zéro et sont de signes différents.

Exemples

(+3) et (-3) sont deux nombres opposés, car (+3) + (-3) = 0. L'opposé de (-154) est (+154), car (-154) + (+154) = 0.

Opposé: du latin opponere, « placer en face de ».

---- Distance à zéro (p. 17)

18

Addition de nombres relatifs

Propriétés

Pour additionner des nombres de même signe:

- on additionne les distances à zéro des nombres;
- on met devant le résultat le signe commun aux deux nombres.

Exemple

$$(+2) + (+7) = (+9)$$

$$(-2) + (-7) = (-9)$$

Pour additionner des nombres de signes différents:

- on soustrait la plus petite distance à zéro à la plus grande;
- on met devant le résultat le signe du nombre ayant la plus grande distance à zéro.

Exemple

$$(+2) + (-7) = (-5)$$

$$(-2) + (+7) = (+5)$$

Remarques

• On peut visualiser l'addition de nombres relatifs à l'aide de la droite numérique.

Exemple
$$(+2) + (-7) = -5$$

 Les propriétés ci-dessus de l'addition pour les entiers relatifs (ℤ) sont également valables pour les nombres réels (ℝ).

Exemples

$$(+3,4) + (-6,5) = (-3,1)$$

$$\left(-\frac{2}{5}\right) + \left(-\frac{4}{5}\right) = \left(-\frac{6}{5}\right)$$

Soustraction de nombres relatifs

Propriété

Pour soustraire un nombre, on additionne son opposé.

Exemples

$$(-9) - (-10) = (-9) + (+10) = (+1)$$

$$(+3) - (+4) = (+3) + (-4) = (-1)$$

Remarque

Cette propriété de la soustraction pour les entiers relatifs (\mathbb{Z}) est également valable pour les nombres réels (\mathbb{R}).

Exemples

$$(+3,4) - (-6,5) = (+3,4) + (+6,5) = (+9,9)$$

$$\left(-\frac{2}{5}\right) - \left(-\frac{4}{5}\right) = \left(-\frac{2}{5}\right) + \left(+\frac{4}{5}\right) = \left(+\frac{2}{5}\right)$$

Ecriture simplifiée d'une somme ou d'une différence de nombres relatifs

Convention d'écriture

Dans une addition de nombres relatifs, on peut supprimer:

- les signes d'addition;
- les parenthèses autour de chaque nombre;
- le signe d'un nombre positif écrit en début de calcul.

Exemples

$$(+6) + (-7) + (-12) = 6 - 7 - 12 = -13$$

 $(-5) + (+4) + (+8) = -5 + 4 + 8 = 7$

Remarques

- Simplifier l'écriture permet de calculer plus facilement des sommes et des différences de nombres relatifs.
- Les conventions d'écriture ci-dessus sont également valables pour les nombres réels (R).
- S'il y a des soustractions de nombres relatifs dans l'opération proposée, on les transformera en addition de l'opposé avant de simplifier l'écriture.

Exemples

$$(+5) - (+9) + (-12) = (+5) + (-9) + (-12) = 5 - 9 - 12 = -16$$

 $(-3) + (+4) - (-8) = (-3) + (+4) + (+8) = -3 + 4 + 8 = 9$

Ensembles de nombres (p. 10), Nombres opposés (p. 17), Nombres réels (p. 32)

Effectuer un calcul comportant des sommes et des différences de nombres relatifs

Méthode

Exemple
$$(-25) + (-10) - (-5) - (+14) + (+68) = ?$$

ÉTAPE 1	
Transformer les soustractions en additions de l'opposé (propriété de la soustraction de nombres relatifs).	(-25) + (-10) - (-5) - (+14) + (+68) = (-25) + (-10) + (+5) + (-14) + (+68) =
ÉTAPE 2	
Supprimer les signes d'addition et les parenthèses en appliquant la convention d'écriture.	-25 - 10 + 5 - 14 + 68 =
ÉTAPE 3	
Regrouper les nombres qui sont précédés du même signe, puis effectuer les calculs.	5 + 68 - 25 - 10 - 14 = 73 - 49 = 24

Remarques

- On peut aussi faire les calculs de gauche à droite une fois l'écriture simplifiée sans passer par le regroupement.
- Cette méthode est également valable pour les nombres réels.

20

Multiplication de nombres relatifs

Propriété 1

Pour multiplier deux nombres relatifs, on multiplie leurs distances à zéro et on donne au produit :

- le signe + si les deux nombres sont de même signe;
- le signe si les deux nombres sont de signes différents.

Exemples

$$(+2) \cdot (+4) = (+8) = 8$$

 $(-2) \cdot (-4) = (+8) = 8$
 $(+2) \cdot (-4) = (-8) = -8$
 $(-2) \cdot (+4) = (-8) = -8$

Propriété 2

Quand on multiplie plusieurs nombres relatifs différents de zéro:

- si le nombre de facteurs négatifs est pair, le produit est positif;
- si le nombre de facteurs négatifs est impair, le produit est négatif.

Exemples

Le produit $(-5) \cdot (+4) \cdot (+2) \cdot (-4) \cdot (-3)$ est négatif, car il y a trois facteurs négatifs. Le produit $(+2) \cdot (-3) \cdot (-7) \cdot (-8) \cdot (-5)$ est positif, car il y a quatre facteurs négatifs.

Remarques

 Pour effectuer le produit de plusieurs nombres relatifs, on peut d'abord déterminer le signe du produit à l'aide de la propriété 2, puis calculer le produit des nombres sans leur signe.

Exemple

$$(-4) \cdot (-2) \cdot (+3) \cdot (-5) = (-120)$$

Il y a trois facteurs
 $4 \cdot 2 \cdot 3 \cdot 5 = 120$

négatifs donc le

produit est négatif

- Les propriétés de la multiplication pour les entiers relatifs (Z) sont également valables pour les nombres réels (R).

Division de nombres relatifs

Propriété

Pour diviser deux nombres relatifs, on divise leurs distances à zéro.

On donne alors au quotient:

- le signe + si les deux nombres sont de même signe;
- le signe si les deux nombres sont de signes différents.

Exemples

$$(+32)$$
: $(+8)$ = $(+4)$ = 4
 (-32) : (-8) = $(+4)$ = 4
 $(+32)$: (-8) = (-4) = -4
 (-32) : $(+8)$ = (-4) = -4

Remarque

Les propriétés de la division pour les entiers relatifs (\mathbb{Z}) sont également valables pour les nombres réels (\mathbb{R}).

--- Distance à zéro (p. 17)

Ensemble des nombres décimaux D

Nombres décimaux

Définitions

- Un nombre décimal est le quotient d'un nombre entier relatif par une puissance de dix.
- Son écriture décimale possède un nombre fini de chiffres non nuls après la virgule.
- On utilise la lettre D pour désigner l'ensemble de tous les nombres décimaux.

Exemples

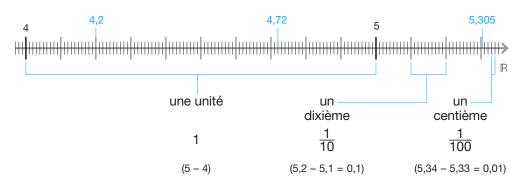
$$\frac{7}{10} = 0.7$$
; $1,125 = \frac{1125}{1000}$; $8,43 = \frac{843}{100}$; $-\frac{5}{2} = -\frac{25}{10} = -2.5$ sont des nombres décimaux. $\frac{1}{3} = 0.\overline{3}$; $\frac{2}{7} = 0.\overline{285714}$; $\pi = 3.14159...$; $-\frac{2}{7}$ ne sont pas des nombres décimaux.

Définitions

- Les décimales sont les chiffres figurant après la virgule.
- La numération décimale est la numération en base dix.

Exemple

$$4272,512 = 4000 + 200 + 70 + 2 + 0,5 + 0,01 + 0,002$$


$$\wedge$$
 04,50 = 4,50 = 4,5

Les zéros placés à gauche de la partie entière et ceux placés à la fin de la partie décimale ne changent pas la valeur du nombre. Ils ne sont généralement pas notés.

ETYM Décimal: du latin decimus, dixième.

Ensembles de nombres (p. 10), Nombres entiers relatifs (p. 17), Puissance de dix (p. 33)

Représentation de nombres décimaux sur une droite graduée

NO.

Approximation d'un nombre décimal

Définition

Donner une **approximation** ou une **valeur approchée** d'un nombre décimal, c'est trouver une valeur proche de ce nombre à une précision choisie. Cette valeur approchée peut, par exemple, être un **arrondi** ou une **troncature**.

Arrondi

Définition

L'arrondi d'un nombre est la valeur approchée la plus proche possible de ce nombre, étant donné la précision choisie.

On arrondit:

- vers le haut (par excès) lorsque le chiffre suivant la précision demandée est supérieur ou égal à 5 (5 à 9);
- vers le bas (par défaut) lorsque le chiffre suivant la précision demandée est inférieur à 5 (0 à 4).

Exemples

3,168 arrondi au centième donne 3,17.

3,163 arrondi au centième donne 3,16.

3,165 arrondi au centième donne, par convention, 3,17.

Troncature

Définition

La troncature d'un nombre est la valeur approchée inférieure à ce nombre, étant donné la précision choisie. Tronquer signifie «couper». Tronquer l'écriture d'un nombre, c'est la couper avec la précision choisie.

Exemples

Nombre	Précision choisie	Valeur approchée arrondi troncature	
		arronar	tioncature
0,468	au centième	0,47	0,46
1,841	au dixième	1,8	1,8
12,35	au dixième	12,4	12,3
5,8	à l'unité	6	5
125	à la dizaine	130	120

Remarque

Le choix de la précision d'une approximation dépend du contexte de la situation et de la taille des nombres.

Exemple La distance parcourue par un piéton arrondie au millimètre près n'a pas vraiment de sens.

Addition

Définitions

- L'addition est l'opération qui associe, à deux nombres a et b, un troisième noté a + b.
- Le résultat d'une addition s'appelle une somme et les nombres que l'on additionne des termes.

Exemple

Additionner des nombres décimaux positifs en colonnes

Méthode

Exemple 255,45 + 33,9 + 7,2 = ?

Tout d'abord, calculer une approximation du résultat, ce qui permettra de vérifier que la réponse finale est plausible.	$255,45 + 33,9 + 7,2 \cong ?$ $260 + 30 + 10 = 300$		
ETAPE 2 Ecrire les termes de la somme en alignant les unités. ÉTAPE 3 Effectuer l'addition en colonne en commençant par la droite. S'il y a des retenues, les noter au haut de	.:. centaines 7 centaines 7 dizaines 6 dixièmes 7 centièmes 7 centièmes 7 centièmes		
la colonne précédente.	+ 7, 2 2 2 9 6, 5 5		
Vérifier que la somme corresponde à l'approximation.	296,55 ≅ 300		

Soustraction

Définitions

- La **soustraction** est l'opération qui associe, à deux nombres *a* et *b*, un troisième noté *a* − *b*.
- Le résultat d'une soustraction s'appelle une différence et les nombres que l'on soustrait des termes.

Exemple

Soustraire des nombres décimaux positifs en colonnes

Méthode

Exemple
$$528,94 - 40,8 = ?$$

Tout d'abord, calculer une approximation du résultat, ce qui permettra de vérifier que la réponse finale est	528,94 − 40,8 ≅ ?		
plausible.	530 - 40 = 490		
ETAPE 2 Ecrire les termes de la différence en alignant les unités. ETAPE 3	: centaines dizaines unités dixièmes centièmes : centièmes :		
Effectuer la soustraction en colonne en commençant par la droite. S'il y a des emprunts, les noter comme	4 12 5 2 8 9 4 0 8		
dans l'exemple ci-contre.	4 8 8, 1 4		
Vérifier que la différence corresponde à l'approximation.	488,14 ≅ 490		

Multiplication

Définitions

- La multiplication est l'opération qui associe, à deux nombres a et b, un troisième noté $a \cdot b$.
- Le résultat d'une multiplication s'appelle un produit et les nombres que l'on multiplie des facteurs.

Exemple

$$8,2 \cdot 5 = 41$$

facteurs produit

Remarque

Pour éviter la confusion entre le symbole « x » de la multiplication et la lettre « x » utilisée en algèbre, on utilise le symbole «·» pour indiquer la multiplication.

Multiplier des nombres décimaux positifs en colonnes

Méthode

Exemple $15,82 \cdot 5,3 = ?$

ÉTAPE 1			
Tout d'abord, calculer une approximation du résultat, ce qui permettra de vérifier que la réponse finale est plausible.	$15,82 \cdot 5,3 \cong ?$ $16 \cdot 5 = 80$		
Effectuer la multiplication en colonnes sans tenir compte des virgules.	2 4 1 1 2 5, 8 2		
Additionner le nombre de décimales présentes dans chaque facteur et placer la virgule en conséquence dans le produit.	. 5, 3 4 7 4 6 + 7 9 1 0 0 8 3, 8 4 6		
[ETAPE 4] Vérifier que le produit corresponde à l'approximation.	83,846 ≅ 80		

Division

Définitions

- La division est l'opération qui, à deux nombres a et b ($b \neq 0$), associe un troisième c tel que $a = b \cdot c$. On note ce nombre a: b. Il est appelé quotient de a par b.
- Le résultat d'une division s'appelle le quotient, le nombre a se nomme le dividende et le nombre b le diviseur.

Exemple 278 : 69,5 car $69.5 \cdot 4 = 278$ dividende diviseur quotient

Propriété

Le quotient ne change pas si on multiplie le dividende et le diviseur de la division par un même nombre non nul.

Exemple

$$35,2:6,4 = 352:64$$

 $5,5 = 5,5$

Diviser un nombre décimal positif par un nombre décimal positif

Méthode

Exemple 195,04 : 5,3 = ?	
195,04 : 5,3 ≅ ?	

Tout d'abord, calculer une approximation du résultat, ce qui permettra de vérifier que la réponse finale est plausible.

200:5 = 40

ÉTAPE 2

ÉTAPE 1

Multiplier le diviseur par 10, 100, 1000, ... de manière que le diviseur soit un nombre naturel. Multiplier le dividende par le même nombre pour ne pas changer le quotient. ••• Division (p. 24)

195,04 : 5,3 = 1950,4 : 53

ÉTAPE 3

Effectuer la division jusqu'à la virgule. Mettre alors cette dernière après le dernier chiffre du quotient et continuer la division.

1 | 9 | 5 | 0, | 4 | | 5 | 3 |

5 | 3 | 3 | 6, | 8

ÉTAPE 4

Continuer la division jusqu'à ce que le reste soit nul ou lorsque le niveau de précision demandé soit atteint.

3 6 0 3 1 8 4 2 4

4 2 4 4 2 4 0 0 0

ÉTAPE 5

Vérifier que le quotient corresponde à l'approximation.

36,8 ≅ 40

Propriétés de l'addition et de la multiplication

Addition

Propriété 1

Lorsqu'on effectue une addition de deux termes, on peut l'effectuer dans l'ordre que l'on veut.

L'addition est commutative: a + b = b + a.

Exemple 40 + 146 = 146 + 40

Multiplication

Lorsqu'on effectue une multiplication de deux facteurs, on peut l'effectuer dans l'ordre que l'on veut.

La multiplication est commutative: $a \cdot b = b \cdot a$.

Exemple $10 \cdot 5 = 5 \cdot 10$

Propriété 2

Lorsqu'on effectue une addition de plusieurs termes, on peut grouper ces termes comme on le veut.

L'addition est associative:

$$a + b + c = (a + b) + c = a + (b + c)$$
.

Exemple 41,3 + 15,9 + 4,1 = 41,3 + (15,9 + 4,1) = 41,3 + 20

Lorsqu'on effectue une multiplication de plusieurs facteurs, on peut grouper les facteurs comme on le veut.

La multiplication est associative: $a \cdot b \cdot c = (a \cdot b) \cdot c = a \cdot (b \cdot c)$.

Exemple $12 \cdot 25 \cdot 4 = 12 \cdot (25 \cdot 4) = 12 \cdot 100$

Propriété 3

Dans une suite d'additions, on peut effectuer les calculs dans l'ordre que l'on veut en utilisant la commutativité et l'associativité.

Cette propriété permet dans certains cas de simplifier les calculs.

Exemple 137 + 89 + 63 = (137 + 63) + 89 = 200 + 89 = 289

Dans une suite de multiplications, on peut effectuer les calculs dans l'ordre que l'on veut en utilisant la commutativité et l'associativité.

Cette propriété permet dans certains cas de simplifier les calculs.

Exemple $25 \cdot 91 \cdot 4 = (25 \cdot 4) \cdot 91 = 100 \cdot 91 = 9100$

• • •

26

Propriété 4

Lorsqu'on additionne 0 à un nombre, on obtient ce nombre.

0 est l'élément neutre pour l'addition: a + 0 = a.

Exemple 128,09 + 0 = 128,09

Lorsqu'on multiplie un nombre par 1, on obtient ce nombre.

1 est l'élément neutre pour la multiplication: $a \cdot 1 = a$.

Exemple $4235,2 \cdot 1 = 4235,2$

Lorsqu'on multiplie un nombre par 0, on obtient 0.

0 est l'élément absorbant pour la multiplication: $a \cdot 0 = 0$.

Exemple $78,206 \cdot 0 = 0$

Propriété 5

Lorsqu'on multiplie une somme ou une différence par un nombre, on peut multiplier chaque terme de cette somme ou différence par ce nombre.

La multiplication est distributive sur l'addition et la soustraction:

$$a \cdot (b+c) = a \cdot b + a \cdot c$$
 et $a \cdot (b-c) = a \cdot b - a \cdot c$.

Exemples

$$12 \cdot (100 + 1) = 12 \cdot 100 + 12 \cdot 1 = 1200 + 12 = 1212$$

 $34 \cdot (10 - 1) = 34 \cdot 10 - 34 \cdot 1 = 340 - 34 = 306$

⚠ La soustraction et la division ne sont ni associatives ni commutatives.

Exemples

$$(45-25) - 10 \neq 45 - (25-10)$$

 $20 - 10 \neq 45 - 15$
 $10 \neq 30$

$$40-60 \neq 60-40$$

 $-20 \neq 20$

⚠ En mathématiques, la division par 0 est impossible, car elle n'a pas de sens.

Priorités des opérations

Convention

Dans une série d'opérations, on effectue d'abord les opérations entre parenthèses.

Dans les parenthèses ou lorsqu'il n'y plus de parenthèses, on effectue :

- d'abord les puissances et les racines;
- ensuite les multiplications et les divisions de gauche à droite;
- enfin les additions et les soustractions.

Exemples

$$12 \cdot (5+2) = 12 \cdot 7 = 84$$
 $4+2 \cdot 3 = 4+6 = 10$ $2 \cdot 3^2 = 2 \cdot 9 = 18$ $12-5+7=7+7=14$

$$4+2\cdot 3 = 4+6 = 10$$

 $12-5+7=7+7=14$

$$6:3\cdot 2 = 2\cdot 2 = 4$$

Effectuer un calcul avec ou sans parenthèses

Méthode

Exemple $7 + 3 \cdot (4^2 + 20:4)$

ÉTAPE 1	
Repérer s'il y a des parenthèses. Si oui, effectuer les calculs prioritaires à l'intérieur.	$7 + 3 \cdot (4^{2} + 20 : 4)$ $= 7 + 3 \cdot (16 + 5)$
ÉTAPE 2	
Terminer le calcul entre parenthèses et écrire le résultat en enlevant les parenthèses.	= 7 + 3 · 21
ÉTAPE 3	7 . 62
Effectuer l'opération prioritaire et écrire le résultat.	= 7 + 63
ÉTAPE 4	70
Achever le calcul en effectuant les opérations de gauche à droite.	= 70

Ensemble des nombres rationnels Q

Nombres rationnels

Définitions

- Un nombre rationnel est le quotient de deux nombres entiers relatifs a et b (b ≠ 0). Il peut s'écrire sous la forme d'une fraction a/b, où a est le numérateur et b le dénominateur. Son écriture décimale est finie ou périodique.
- On utilise la lettre Q pour désigner l'ensemble de tous les nombres rationnels.

3 — NUMÉRATEUR (ou dividende)
barre de fraction
DÉNOMINATEUR (ou diviseur)

Exemples

-2 ; $-\frac{7}{5}$; 0 ; $\frac{1}{4}$; 0,5 ; $\frac{2}{3}$; 8, $\overline{45}$; ... sont des nombres rationnels.

Par contre: π ; $\sqrt{2}$; ... ne sont pas des nombres rationnels.

Remarques

- Les nombres décimaux sont inclus dans les nombres rationnels.
 La réciproque n'est pas vraie.
- Il faut faire la différence entre une fraction et une écriture fractionnaire.
 Une fraction est le rapport de deux nombres entiers relatifs écrit sous forme fractionnaire (^a/_b avec a et b appartenant à Z).

Une écriture fractionnaire est le rapport de deux nombres quelconques écrit sous forme fractionnaire ($\frac{a}{b}$ quels que soient a et b).

Exemples

$$\frac{3}{5}$$
; $\frac{-7}{3}$ sont des fractions.

$$\frac{2,4}{5}$$
; $\frac{3}{-5.15}$; $\frac{3}{5}$; $\frac{-7}{3}$ sont des écritures fractionnaires.

Ensembles de nombres (p. 10), Nombres entiers relatifs (p. 17), Nombres décimaux (p. 21)

28

Passer d'une écriture fractionnaire à une écriture décimale

Méthode

En divisant le numérateur par le dénominateur.

Exemple
$$\frac{7}{8} = ?$$
 et $\frac{13}{11} = ?$

ÉTAPE 1	
Effectuer la division.	$\frac{7}{8} = 7:8 = 0,875$ $\frac{13}{11} = 1,1818$
ÉTAPE 2	
Vérifier que la division se termine ou que l'on retrouve un reste déjà rencontré.	$ \begin{array}{c ccccc} 7 & 8 & & 13 & 11 \\ 70 & 0,875 & & -11 & 1,18 \\ -64 & & & 20 \\ \hline 60 & & -11 \\ -56 & & 90 \\ 40 & & -88 \\ -40 & & 0 \end{array} $

Remarque

Pour certaines fractions, il est possible, par amplification ou par simplification, d'obtenir une fraction égale dont le dénominateur est une puissance de 10.

Exemple

$$\frac{3}{5} = ?$$

$$\frac{3}{5} = \frac{3}{5} \cdot \frac{2}{2} = \frac{6}{10} = 0.6$$

Passer d'une écriture décimale finie à une écriture fractionnaire

Méthode

Exemple
$$3,15 = ?$$

Ecrire le nombre sous forme de fraction (par amplification).	$3,15 = \frac{3,15}{1} = \frac{315}{100}$
Rechercher la fraction irréductible (par simplification).	$\frac{315}{100} = \frac{315 : 5}{100 : 5} = \frac{63}{20}$ $3,15 = \frac{63}{20}$

Remarque

Pour mettre un nombre entier sous forme de fraction, il suffit de mettre 1 comme dénominateur. On peut ensuite amplifier cette fraction pour obtenir un autre nombre comme dénominateur.

Exemples

$$4 = \frac{4}{1} = \frac{8}{2} = \frac{20}{5} = \dots$$

$$1 = \frac{1}{1} = \frac{2}{2} = \frac{12}{12} = \dots$$

Amplification et simplification de fractions

Propriété

Si on multiplie le numérateur et le dénominateur d'une fraction par un même nombre entier non nul, on obtient une fraction égale à la première. On dit qu'on a amplifié la fraction par le nombre en question.

Quels que soient les nombres a, b et k ($b \ne 0$ et $k \ne 0$), on a: $\frac{a}{b} = \frac{k \cdot a}{k \cdot b}$.

Exemples

Propriété

Si on divise le numérateur et le dénominateur d'une fraction par un diviseur commun au numérateur et dénominateur, on obtient une fraction égale à la première. On dit qu'on a simplifié la fraction par le diviseur commun.

Quels que soient les nombres a, b et k diviseur commun de a et b ($b \neq 0$), on a: $\frac{a}{b} = \frac{a:k}{b:k}$.

Remarque

Une fraction irréductible est une fraction qu'on ne peut plus simplifier.

 $\frac{1}{4} \; ; \; \frac{11}{5} \; ; \; -\frac{3}{7} \; \text{ sont des fractions irréductibles}.$ Par contre, les fractions $\; \frac{12}{4} \; ; \; \frac{11}{555} \; ; \; -\frac{30}{70} \; \text{ ne sont pas irréductibles}.$

Addition et soustraction de fractions

Propriété

Pour calculer la somme ou la différence de deux fractions ayant le même dénominateur, on additionne les numérateurs et on garde le **dénominateur commun**.

Quels que soient les nombres entiers a, b et c ($c \neq 0$),

on a:
$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$
 et $\frac{a}{c} - \frac{b}{c} = \frac{a-b}{c}$.

Exemples

$$\frac{2}{3} + \frac{5}{3} = \frac{2+5}{3} = \frac{7}{3} \qquad \qquad \frac{7}{5} - \frac{4}{5} = \frac{7-4}{5} = \frac{3}{5}$$

Remarque

Si les deux fractions à additionner n'ont pas le même dénominateur, il faut les remplacer par deux fractions égales qui ont le même dénominateur.

Exemple

$$\frac{1}{6} + \frac{3}{4} = \frac{2 \cdot 1}{2 \cdot 6} + \frac{3 \cdot 3}{3 \cdot 4} = \frac{2}{12} + \frac{9}{12} = \frac{11}{12}$$

Additionner et soustraire des fractions

Méthode Exemple 1 $\frac{5}{6} + \frac{2}{6} = ?$

ÉTAPE 1	
Ces fractions ont-elles le même dénominateur?	Oui
ETAPE 2 Appliquer la propriété énoncée précédemment : additionner les numérateurs et garder le dénominateur commun.	$\frac{5}{6} + \frac{2}{6} = \frac{5+2}{6} = \frac{7}{6}$

Exemple 2
$$\frac{3}{4} - \frac{1}{6} = ?$$

ÉTAPE 1	
Ces fractions ont-elles le même dénominateur?	Non
Chercher un dénominateur commun. Pour cela, calculer par exemple le produit des deux dénominateurs ou chercher le ppmc de ces deux nombres.	ppmc (4; 6) = 12
Amplifier chaque fraction afin d'obtenir le dénominateur commun qu'on vient de trouver.	$\frac{3}{4} - \frac{1}{6} = \frac{3 \cdot 3}{3 \cdot 4} - \frac{2 \cdot 1}{2 \cdot 6} = \frac{9}{12} - \frac{2}{12}$
Appliquer la propriété énoncée précédemment: soustraire les numérateurs et garder le dénominateur commun.	$\frac{9}{12} - \frac{2}{12} = \frac{7}{12}$

Remarque

Il est généralement souhaitable de donner la réponse finale sous forme de fraction irréductible.

Multiplication de fractions

Propriété

Pour multiplier des fractions, on multiplie les numérateurs entre eux et les dénominateurs entre eux.

Quels que soient les nombres entiers a, b, c et d ($b \ne 0$ et $d \ne 0$),

on a:
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$

$$\frac{3}{5} \cdot \frac{4}{7} = \frac{3 \cdot 4}{5 \cdot 7} = \frac{12}{35}$$

$$\frac{3}{5} \cdot \frac{4}{7} = \frac{3 \cdot 4}{5 \cdot 7} = \frac{12}{35}$$
 $\left(-\frac{5}{7}\right) \cdot 3 = \left(-\frac{5}{7}\right) \cdot \frac{3}{1} = -\frac{15}{7}$

Remarque

Il peut être très utile de simplifier les fractions avant d'effectuer les produits.

Exemple
$$\frac{7}{9} \cdot \frac{12}{14} = \frac{1}{9 \cdot 14} = \frac{1 \cdot 12}{9 \cdot 14} = \frac{1 \cdot 12}{3 \cdot 2} = \frac{1 \cdot 4}{3 \cdot 2} = \frac{1 \cdot 2}{3 \cdot 1} = \frac{2}{3}$$

Calculer la fraction d'un nombre

En revenant au sens de la fraction.

Pour calculer les $\frac{2}{5}$ de 15,

- o on cherche la valeur de $\frac{1}{5}$ de 15 \rightarrow 15:5 = 3;
- o on multiplie le résultat par $2 \rightarrow 3 \cdot 2 = 6$.

En utilisant la propriété « calculer $\frac{a}{b}$ de c, c'est calculer $\frac{a}{b} \cdot c$ ».

Pour calculer les $\frac{3}{4}$ des $\frac{7}{5}$, on fait: $\frac{3}{4} \cdot \frac{7}{5} = \frac{21}{20}$.

Nombres inverses

Définition

Deux nombres non nuls sont inverses l'un de l'autre si leur produit est égal à 1.

$$\circ$$
 $\frac{2}{3}$ et $\frac{3}{2}$ sont inverses l'un de l'autre, car $\frac{2}{3} \cdot \frac{3}{2} = \frac{6}{6} = 1$.

• 4 et
$$\frac{1}{4}$$
 sont inverses l'un de l'autre, car $4 \cdot \frac{1}{4} = \frac{4 \cdot 1}{4} = 1$.

$$\frac{1}{5}$$
 est l'inverse de (-5), car $\left(-\frac{1}{5}\right)$ · (-5) = $\frac{(-1)\cdot(-5)}{5}$ = 1.

Division de fractions

Propriété

Pour diviser deux fractions, on multiplie la première par l'inverse de la seconde. Quels que soient les nombres entiers a, b, c et d ($b \ne 0$; $c \ne 0$ et $d \ne 0$),

on a:
$$\frac{a}{b}$$
: $\frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{a \cdot d}{b \cdot c} = \frac{ad}{bc}$.

$$\frac{2}{3} : \frac{7}{5} = \frac{2}{3} \cdot \frac{5}{7} = \frac{10}{21}$$

$$\frac{2}{3} : \frac{7}{5} = \frac{2}{3} : \frac{5}{7} = \frac{10}{21} \qquad \frac{9}{14} : \frac{3}{7} = \frac{39}{14} : \frac{1}{3} = \frac{3}{2} \qquad -\frac{8}{5} : 4 = -\frac{8}{5} : \frac{1}{4} = -\frac{2}{5}$$

$$-\frac{8}{5}:4=-\frac{28}{5}\cdot\frac{1}{4}=-\frac{2}{5}$$

NO

Ensemble des nombres réels R

Nombres réels

Définitions

- Un nombre réel est un nombre dont l'écriture décimale est formée d'une partie entière et d'une partie décimale finie ou infinie.
- On utilise la lettre ℝ pour désigner l'ensemble de tous les nombres réels.

Exemples 2,57; -9; 3,14159...; 0,123456789101112...;
$$\frac{2}{5} = 0,4$$
; 0; 5; ...

- Conséquences Les nombres naturels, relatifs, décimaux et rationnels sont des nombres réels.
 - Les nombres qui ont une écriture décimale infinie non périodique sont appelés nombres irrationnels. Ils ne peuvent pas s'écrire sous la forme d'une fraction. Les nombres irrationnels sont des nombres réels.

Exemples
$$\sqrt{2} = 1,41421356...$$
; $\pi = 3,14159265...$; $1,11010010010000...$

• Les nombres réels permettent de repérer n'importe quel point sur une droite graduée.

Puissances

Puissance d'exposant positif

Définition

La puissance d'un nombre est le résultat de la multiplication répétée de ce nombre avec lui-même.

Notation

Soient n un nombre naturel $(n \neq 0)$ et a un nombre réel, alors:

$$(a \cdot a \cdot a \cdot a \cdot a \cdot a \cdot a) = a^n$$
 $n \text{ facteurs}$
 $n \text{ facteurs}$

 a^n se lit «a exposant n» ou «a puissance n». C'est une puissance de a. a s'appelle la base et n l'exposant.

Exemple
$$3 \cdot 3 \cdot 3 \cdot 3 = 3^4 = 81$$

Remarques • $a^1 = a$

- $a^0 = 1 (a \neq 0)$
- a² se lit généralement «a au carré» et a³ «a au cube».
- Le carré d'un nombre entier est aussi appelé carré parfait.

Puissance d'exposant négatif

Définition

Soient *n* un nombre naturel et *a* un nombre réel différent de 0. Le nombre a^{-n} désigne l'inverse du nombre a^{n} .

$$a^{-n} = \frac{1}{a^n}$$

Exemples

$$10^{-3} = \frac{1}{10^{3}} = 0,001$$

$$10^{-3} = \frac{1}{10^3} = 0,001$$
 $2^{-2} = \frac{1}{2^2} = \frac{1}{4} = 0,25$

Puissance de dix

Définition

Soit *n* un nombre naturel.

On appelle puissance de dix le nombre noté 10^n ou 10^{-n} .

Propriété 1

Quel que soit l'entier positif n:

$$10^n = 10 \cdot 10 \cdot 10 \cdot \dots \cdot 10 = 1000 \dots 0$$
(*n* fois) (un 1 suivi de *n* zéros)

Exemple $10^6 = 1000000$ (un 1 suivi de 6 zéros)

Propriété 2

Quel que soit l'entier positif n:

$$10^{-n} = \frac{1}{10^n} = \frac{1}{1000...0} = 0,000...1$$
(*n* chiffres après la virgule)

Exemple
$$10^{-4} = \frac{1}{10^4} = \frac{1}{10000} = 0,0001$$
 (4 chiffres après la virgule)

Notation

Puissance	Ecriture décimale	Nom	Préfixe	Symbole
 10 ¹²	1 000 000 000 000	billion	téra	Т
10 ⁹	1000000000	milliard	giga	G
10 ⁶	1 000 000	million	méga	М
10 ³	1 000	mille	kilo	k
10 ²	100	cent	hecto	h
10 ¹	10	dix	déca	da
10 ⁰	1	un		
10 ⁻¹	0,1	dixième	déci	d
10-2	0,01	centième	centi	С
10 ⁻³	0,001	millième	milli	m
10 ⁻⁶	0,000001	millionième	micro	μ
10 ⁻⁹	0,000 000 001	milliardième	nano	n
10 ⁻¹²	0,000 000 000 001	billionième	pico	р

Exemples

$$1 GW = 10^9 W$$

 $1 Mo = 10^6 o$

1
$$mg = 0.001 g$$

1 μ s = 10^{-6} s

Propriétés des puissances

Soit m et n deux nombres entiers et a et b deux nombres réels ($b \neq 0$).

Propriété 1 Produit de puissances de même base

$$a^m \cdot a^n = a^{m+n}$$

Exemple
$$9^2 \cdot 9^3 = 9^{2+3} = 9^5$$

Propriété 2 Quotient de puissances de même base

$$a^m:a^n=a^{m-n}$$

Exemple
$$6^5:6^3=6^{5-3}=6^2$$

Propriété 3 Puissance d'une puissance

$$(a^m)^n = a^{m \cdot n}$$

Exemple
$$(10^2)^3 = 10^{2 \cdot 3} = 10^6$$

Propriété 4 Puissance d'un produit

$$(a \cdot b)^m = a^m \cdot b^m$$

Exemple
$$(10 \cdot 4)^2 = 10^2 \cdot 4^2$$

Propriété 5 Puissance d'un quotient

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

Exemple
$$\left(\frac{7}{4}\right)^3 = \frac{7^3}{4^3}$$

⚠ La puissance est une opération étroitement liée à la multiplication. Les règles de calculs ci-dessus ne fonctionnent pas pour l'addition et la soustraction:

$$a^m + a^n \neq a^{m+n}$$
 et $a^m - a^n \neq a^{m-n}$

Exemples

$$5^{2} \cdot 4^{2} = (5 \cdot 4)^{2}$$
 par contre $5^{2} + 4^{2} \neq (5 + 4)^{2}$
 $25 \cdot 16 = 20^{2}$ $25 + 16 \neq 9^{2}$
 $400 = 400$ $41 \neq 81$
 $10^{3} \cdot 10^{1} = 10^{3+1} = 10^{4}$ par contre $10^{3} + 10^{1} \neq 10^{3+1} = 10^{4}$
 $1000 \cdot 10 = 10000$ $1000 + 10 \neq 10000$

Remarque Ces propriétés peuvent aisément être retrouvées en revenant à la définition de la puissance.

Evennles

NO

Notation scientifique

Définition

Un nombre décimal positif est écrit en **notation scientifique** s'il est écrit sous la forme $a \cdot 10^n$ où:

- a est un nombre décimal tel que 1 ≤ a < 10 (c'est-à-dire ayant un seul chiffre non nul devant la virgule);
- *n* est un nombre entier relatif.

Exemples

Les nombres suivants sont écrits en notation scientifique : $1,25 \cdot 10^5$ $4 \cdot 10^{-3}$ $8,561 \cdot 10^2$ $7,2 \cdot 10^{-4}$

Par contre: $0,253 \cdot 10^5$ ou $42,1 \cdot 10^{-3}$ ne sont pas écrits en notation scientifique.

Remarques

 La notation scientifique est particulièrement intéressante lorsque l'on traite de très petits ou de très grands nombres pour les rendre plus facilement lisibles et plus simple à écrire.

Exemples

Diamètre d'un noyau d'atome $\cong 0,000\,000\,000\,000\,001\,m = 1\cdot 10^{-15}\,m$. Masse de la Terre $\cong 5970\,000\,000\,000\,000\,000\,000\,kg = 5,97\cdot 10^{24}\,kg$.

• Lorsqu'un résultat dépasse la capacité d'affichage d'une calculatrice, celle-ci affiche le résultat en notation scientifique.

$$1,2^5 \neq 1,2 \cdot 10^5$$

Ecrire un nombre décimal positif en notation scientifique

Méthode

Exemple Ecrire 0,000012 en notation scientifique.

ÉTAPE 1	
Noter le coefficient a (1 $\leq a <$ 10) de la puissance de 10.	1,2 · 10 ···
ÉTAPE 2	
Déterminer le signe de l'exposant de 10. Si le nombre est plus grand que 1, l'exposant est un entier positif. Si le nombre est plus petit que 1, l'exposant est un entier négatif.	0,000012 < 1, alors l'exposant est un entier négatif.
Déterminer la valeur de cet exposant en comptant de combien de rangs il est nécessaire de déplacer la virgule.	Ici, la virgule doit se déplacer de 5 rangs vers la droite (0,00001,2). L'exposant sera donc –5.
Ecrire le nombre en notation scientifique.	$0,000012 = 1,2 \cdot 10^{-5}$

Racines

Racine carrée

NO

Définition

Soit a un nombre réel positif. On appelle racine carrée de a, notée \sqrt{a} , le nombre positif dont le carré est égal à a. La racine carrée de a est la solution positive de l'équation $x^2 = a$.

Exemples
$$\sqrt{81} = 9 \text{ car } 9^2 = 81 \text{ et } 9 \text{ est positif.}$$
 $\sqrt{2,25} = 1,5, \text{ car } 1,5^2 = 2,25 \text{ et } 1,5 \text{ est positif.}$ $\sqrt{81} \neq -9 \text{ même si } (-9)^2 = 81.$

- Remarques Un nombre strictement négatif n'a pas de racine carrée dans R. **Exemple** $\sqrt{-9}$ n'existe pas dans \mathbb{R} .
 - $\sqrt{0} = 0$
 - Si a est positif, $\sqrt{a^2} = a$.
 - Ensembles de nombres (p. 10), Nombres réels (p. 32)

Racine cubique

Définition

Soit a un nombre réel. On appelle racine cubique de a, notée $\sqrt[3]{a}$, le nombre dont le cube est égal à a.

Exemples
$$\sqrt[3]{-125} = -5$$
, car $(-5)^3 = -125$. $\sqrt[3]{27} = 3$, car $3^3 = 27$.

Remarques

- $\sqrt[3]{0} = 0$
- · La racine cubique d'un nombre négatif existe, contrairement à la racine carrée d'un tel nombre.
- Ensembles de nombres (p. 10), Nombres réels (p. 32)

Propriétés des racines

Propriétés

Soient a et b, deux nombres réels positifs.

$$\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}$$

$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \quad (b \neq 0)$$

Exemples
$$\sqrt{5} \cdot \sqrt{20} = \sqrt{5 \cdot 20} = \sqrt{100} = 10$$

$$\frac{\sqrt{72}}{\sqrt{50}} = \sqrt{\frac{72}{50}} = \sqrt{\frac{36}{25}} = \frac{6}{5}$$

Conséquence
$$\sqrt{a^2 \cdot b} = \sqrt{a^2} \cdot \sqrt{b} = a\sqrt{b}$$
 pour tout nombre a et b positif.

Exemple
$$\sqrt{50} = \sqrt{25 \cdot 2} = \sqrt{25} \cdot \sqrt{2} = 5\sqrt{2}$$

Exemple

$$\sqrt{16} + \sqrt{9} \neq \sqrt{16 + 9}$$

$$4 + 3 \neq \sqrt{25}$$

$$7 \neq 5$$

Remarque

Ces propriétés sont également valables pour les racines cubiques.

Ensembles de nombres (p. 10), Nombres réels (p. 32)

Simplifier des sommes contenant des racines carrées

Méthode

Exemple 1
$$3\sqrt{7} + 5\sqrt{7} - 6\sqrt{7} = ?$$

Les nombres sous la racine sont-ils les mêmes?	Oui.
Additionner les coefficients placés devant la racine carrée (distributivité), puis noter le facteur entier avant la racine.	$3\sqrt{7} + 5\sqrt{7} - 6\sqrt{7} = (3 + 5 - 6) \cdot \sqrt{7}$ $= 2\sqrt{7}$

Exemple 2
$$\sqrt{8} + \sqrt{18} = ?$$

Les nombres sous la racine sont-ils les mêmes?	Non.
Décomposer les nombres sous les racines en un produit pour faire apparaître, si possible, un carré parfait et un facteur commun aux deux termes.	$\sqrt{8} + \sqrt{18} = \sqrt{4 \cdot 2} + \sqrt{9 \cdot 2}$
Appliquer la propriété du produit des racines carrées.	$= \sqrt{4} \cdot \sqrt{2} + \sqrt{9} \cdot \sqrt{2}$ $= 2 \cdot \sqrt{2} + 3 \cdot \sqrt{2}$
Utiliser la distributivité et réduire l'écriture.	$= (2+3) \cdot \sqrt{2}$ $= 5\sqrt{2}$

Remarque

Il n'est pas toujours possible de simplifier des sommes de racines carrées.

Exemple $2\sqrt{5} + 3\sqrt{7}$

Probabilités

Série statistique et fréquence

NO

Série statistique

Définition

Une série statistique est un ensemble de valeurs numériques.

Exemples

Les notes obtenues par une classe à un test de mathématiques, le nombre de frères et sœurs d'une population donnée, le nombre d'habitants des villes d'un canton, les salaires des employés d'une entreprise, etc. sont des séries statistiques.

Fréquence

Définition

On appelle fréquence d'une valeur d'une série statistique le quotient

Nombre d'apparitions de cette valeur Nombre de valeurs de la série

Ce quotient est compris entre 0 et 1. Il peut aussi s'exprimer sous forme d'un pourcentage.

Exemple

Un élève lance un dé seize fois de suite. Voici les nombres qu'il obtient:

2;3;3;5;6;1;2;5;6;4;3;1;4;2;5;5.

Quelle est la fréquence du 5?

Le 5 apparaît 4 fois.

La fréquence du 5 est de $\frac{4}{16}$ = 0,25 = 25%.

Situation aléatoire, événement

Situation aléatoire

Définition

Une situation est dite **aléatoire** si elle conduit à des résultats possibles parfaitement identifiables. Par contre, on ne sait pas à l'avance quel résultat va se produire.

Exemple

On tire au hasard une boule d'un sac qui contient deux boules rouges, trois boules vertes et cinq boules jaunes. On regarde la couleur de la boule tirée.

Cette situation est une situation aléatoire, car elle conduit à des résultats possibles parfaitement identifiables : obtenir une boule rouge, une boule verte ou une boule jaune.

Par contre, avant de tirer la boule, on ne peut pas prévoir précisément quelle sera sa couleur.

Evénement

Définition

Un événement d'une situation aléatoire est un ensemble contenant un ou plusieurs résultats.

On dispose des cartes ci-dessous. On tire une carte au hasard.

Probabilité d'un événement

Définition

Pour certaines situations aléatoires, on peut déterminer par un quotient la «chance» qu'un événement a de se produire. Ce quotient est appelé probabilité de cet événement.

Exemple

On tire au hasard une boule d'un sac qui contient deux boules rouges et trois boules blanches. On a deux chances sur cinq d'obtenir une boule rouge. Donc la probabilité d'obtenir une boule rouge est de $\frac{2}{5} = 0.4$.

Résultats équiprobables

Définition

Dans certaines situations aléatoires, tous les résultats ont la même probabilité. On dit qu'ils sont équiprobables.

Exemple

Lorsqu'on lance un dé usuel, numéroté de 1 à 6, parfaitement équilibré et qu'on regarde le numéro qui apparaît, tous les numéros ont la même probabilité d'apparition. Les résultats aléatoires de cette expérience sont équiprobables. Lorsque le dé est pipé, ce n'est pas le cas.

Propriété

Si les résultats d'une situation aléatoire sont équiprobables, alors la probabilité d'un événement est égale au quotient:

Nombre de résultats favorables Nombre de résultats possibles

Exemple

Un sac contient les jetons numérotés 1; 3; 4; 5; 5; 6; 9. Quelle est la probabilité d'obtenir un nombre pair? Nombre de résultats possibles: 7 Nombre de résultats favorables: 2

 $p = \frac{2}{7}$

Probabilité et fréquence

Propriété

Si l'on répète une situation aléatoire un très grand nombre de fois, la fréquence d'apparition de n'importe quel événement sera proche d'un nombre qui correspond à la probabilité de cet événement.

Exemple

En reprenant l'exemple précédent, on répète l'expérience un très grand nombre de fois: «On tire un jeton dont on note le numéro et on le remet dans le sac.»

La fréquence d'apparition d'un nombre pair sera proche du nombre $\frac{2}{7}$, car c'est la probabilité de l'événement « obtenir un nombre pair ».

Calculer la probabilité d'un événement

Méthode 1

Utilisation du quotient
Nombre de résultats favorables
Nombre de résultats possibles

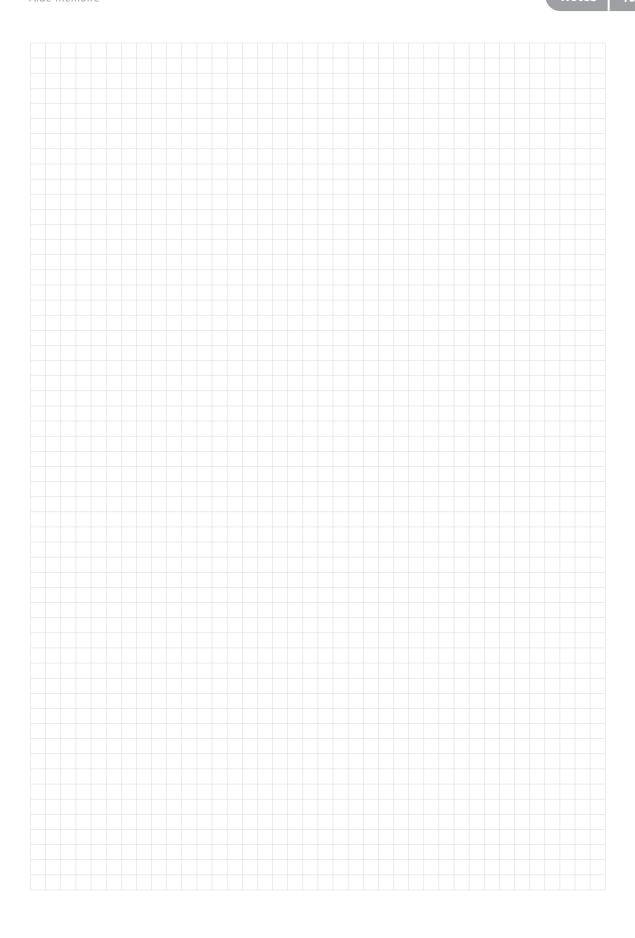
Exemple A l'aide d'un tableur, on tire au hasard un nombre entier compris entre 1 et 40.

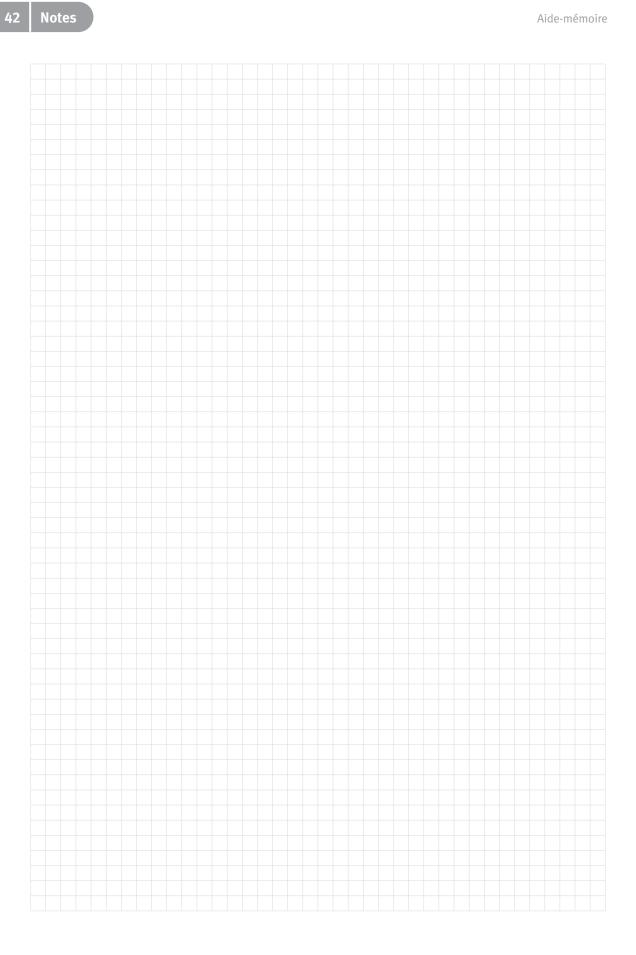
Quelle est la probabilité d'obtenir un multiple de 3?

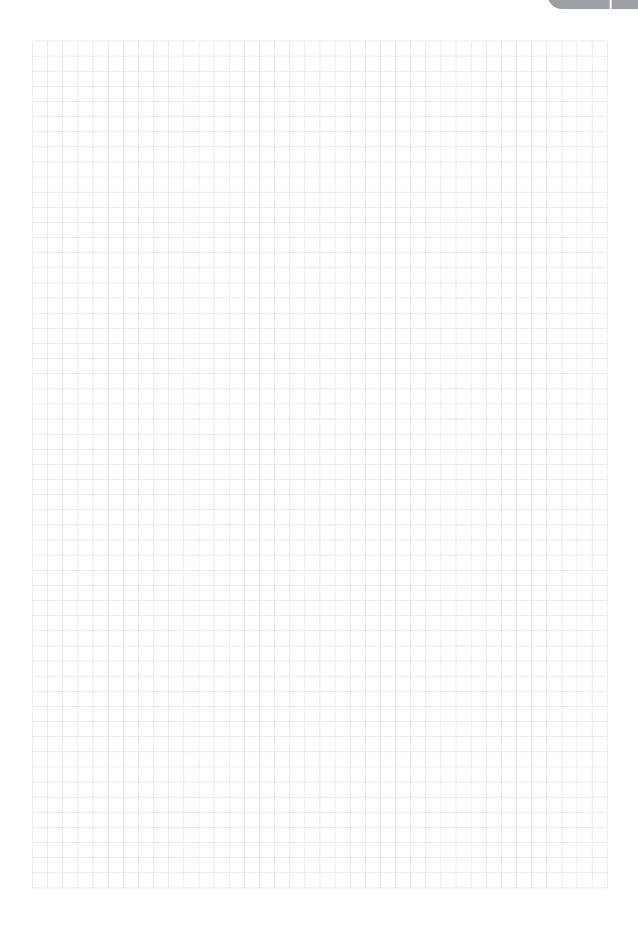
N	0

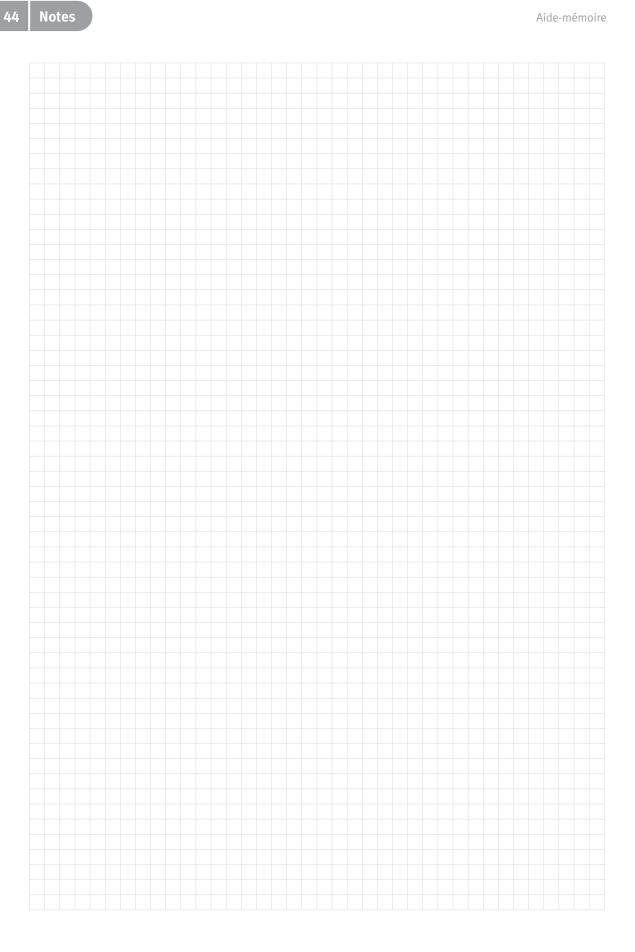
Est-ce que les résultats sont équiprobables?	Le tirage au tableur étant effectué au hasard, les résultats sont équiprobables.
Si c'est le cas, la probabilité de l'événement est égale au quotient Nombre de résultats favorables Nombre de résultats possibles	Nombre de résultats possibles : 40 Nombre de résultats favorables : 13, car il y a 13 multiples de 3 entre 1 et 40. La probabilité d'obtenir un multiple de 3 est de $\frac{13}{40}$.

Méthode 2


Calcul de la fréquence de l'événement.


Exemple On dispose d'un dé cubique pipé (truqué) numéroté de 1 à 6. Comment peut-on calculer la probabilité de l'apparition du 6?


ÉTAPE 1	
Est-ce que la probabilité de chaque résultat est la même?	La probabilité de chaque résultat n'est pas la même, car le dé est pipé.
	On ne peut donc pas utiliser le rapport:
	Nombre de résultats favorables Nombre de résultats possibles
ÉTAPE 2	
Effectuer un très grand nombre de lancers et calculer la fréquence de l'événement.	Pour trouver la probabilité de l'événement «tirer un 6» on lance un très grand nombre de fois le dé et on note chaque fois le résultat obtenu. On calcule ensuite la fréquence de l'événement en divisant le nombre de fois qu'on a obtenu le 6 par le nombre total de lancers.


Choix de la méthode

La première méthode n'est utilisable que si les résultats sont équiprobables.

Fonctions et algèbre

- Fonctions
- Proportionnalité
- Diagrammes
- Calcul littéral
- Equations

Fonctions

Généralités

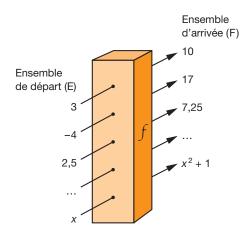
Définition

Une **fonction** est une **relation** qui associe à chaque élément d'un ensemble de départ (E) un et un seul élément d'un ensemble d'arrivée (F).

Si
$$f$$
 désigne cette fonction, on note: $f: E \longmapsto F$.

Si x est un élément de E, on désigne par f(x) l'élément de F qui est associé à x.

On dit que f(x) est l'**image** de x par la fonction f et l'on note: $f: x \longmapsto f(x)$.


Exemple

Soit la fonction f qui, à un nombre x, lui associe le nombre $x^2 + 1$.

On note:
$$f: x \longmapsto x^2 + 1$$

Par la fonction f, le nombre 3 est associé à 10. En effet, si x = 3, $f(x) = 3^2 + 1 = 10$. On peut alors écrire cela de différentes façons:

 $f: 3 \longmapsto 10$; f(3) = 10; l'image de 3 est 10.

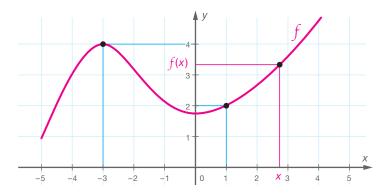
Représentation graphique

Définition

La représentation graphique d'une fonction f dans un repère du plan est l'ensemble des points de coordonnées (x; f(x)).

Pour tracer la courbe représentative d'une fonction, il faut:

- Déterminer, si nécessaire, sa nature (fonction affine, quadratique, etc.) afin d'anticiper la forme de sa représentation graphique.
- Trouver les coordonnées d'un certain nombre de points qu'on peut rassembler dans un tableau de valeurs.
- Construire un repère en choisissant des graduations adaptées aux coordonnées calculées précédemment.
- Placer les points dans le repère.
- · Les relier lorsque c'est pertinent.


Remarque

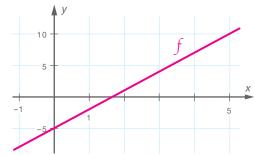
La représentation graphique permet de lire les images de certaines valeurs de x.

Exemple

Soit la représentation graphique de la fonction f.

Sur cette représentation, on peut lire les images de certaines valeurs de x, par exemple, l'image de (-3) est 4, celle de 1 est 2.

Définir une fonction


Il existe différentes façons de définir une fonction f.

Considérons par exemple la fonction f qui associe à tout nombre son triple diminué de 5. On peut la définir de plusieurs manières :

Par un tableau de valeurs

Eléments de l'ensemble de départ	20	1	4,5	 X
Images dans l'ensemble d'arrivée	55	-2	8,5	 3 <i>x</i> – 5

Par une représentation graphique

Par une expression fonctionnelle

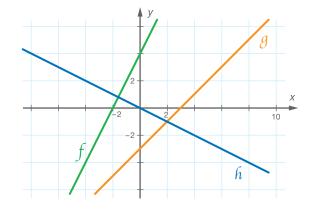
$$f: x \longmapsto 3x - 5$$
ou
$$f(x) = 3x - 5$$
ou
$$y = 3x - 5$$

Dans cette écriture, x représente un nombre de l'ensemble de départ et 3x - 5 sont image dans l'ensemble d'arrivée.

---> Fonctions (p. 46), Représentation graphique (p. 46)

FA

Fonction affine


Définition

Une **fonction affine** est une fonction de la forme $x \mapsto ax + b$ ($a ; b \in \mathbb{R}$). La représentation graphique d'une fonction affine est une droite.

Exemples

$$f: x \longmapsto 2x + 4$$

$$g: x \longmapsto x-3$$

Pente de la droite représentant une fonction affine

Propriété 1

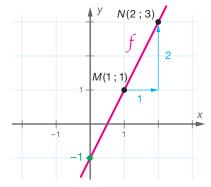
Pour calculer la **pente** p d'une droite qui passe par les points $M(x_1; y_1)$ et $N(x_2; y_2)$, on utilise la formule $p = \frac{y_2 - y_1}{x_2 - x_4}$

Remarque

La pente d'une droite peut être négative, contrairement à la pente d'un terrain, d'une route, etc., qui est toujours positive. Pour exprimer le fait de monter ou de descendre, notamment dans les courses de montagne, on utilise les expressions « dénivelé positif » et « dénivelé négatif ».

Propriétés 2

Dans l'expression fonctionnelle $x \mapsto ax + b$,

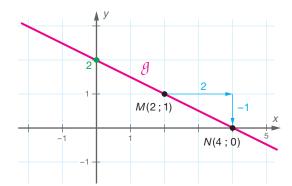

- le nombre a est la pente de la droite;
- le nombre **b** est l'ordonnée du point d'intersection de la droite avec l'axe vertical (axe des ordonnées). On l'appelle l'ordonnée à l'origine.

Exemples

$$f: x \longmapsto 2x-1$$

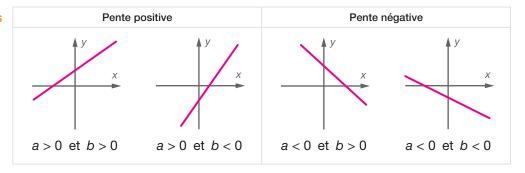
La pente de la droite est 2.

L'ordonnée à l'origine est -1.



$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 1}{2 - 1} = \frac{2}{1} = 2$$

$$g: x \longmapsto -0.5x + 2$$


La pente de la droite est -0,5.

L'ordonnée à l'origine est 2.

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - 1}{4 - 2} = \frac{-1}{2} = -0.5$$

Généralités

Construire la représentation graphique d'une fonction affine

Méthode 1

A l'aide des coordonnées de deux points. Exemple Construire la représentation graphique de la fonction

$$f: x \longmapsto 0.5x - 3.$$

ÉTAPE 1

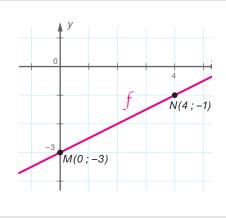
Déterminer la nature de la fonction et anticiper sa représentation graphique.

 $f: x \longmapsto 0.5x - 3$ est de la forme $x \longmapsto ax + b$ (a; $b \in \mathbb{R}$).

C'est une fonction affine, donc sa représentation graphique est une droite.

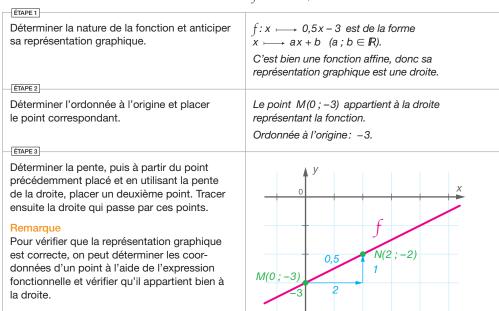
ÉTAPE 2

Trouver, à l'aide de l'expression fonctionnelle, les coordonnées de deux points appartenant à la droite.


X	0	4
0.5x - 3	$0.5 \cdot 0 - 3 = -3$	$0.5 \cdot 4 - 3 = -1$

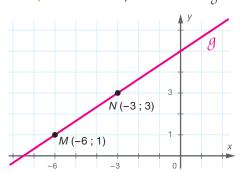
Remarque

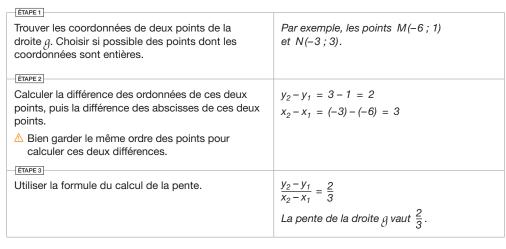
Pour une question de précision ou de contrôle, il peut être utile de trouver les coordonnées d'un troisième point de la droite.


ÉTAPE 3

Placer ces deux ou trois points dans le graphique et tracer la droite qui passe par ces points.

Exemple Construire la représentation graphique de la fonction

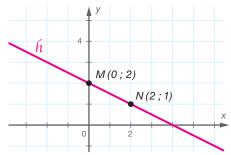

$$f: x \longmapsto 0.5x - 3.$$



Déterminer la pente d'une droite à partir de sa représentation graphique

Méthode

Exemple Déterminer la pente de la droite q.



FA

Déterminer l'expression fonctionnelle d'une fonction affine à partir de sa représentation graphique

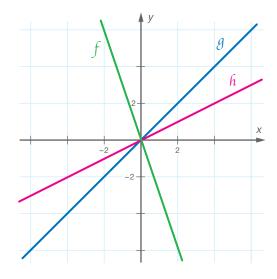
Méthode

Exemple Déterminer l'expression fonctionnelle de la fonction affine représentée par la droite \hat{h} .

ÉTAPE 1	
Noter l'expression fonctionnelle d'une fonction affine sous sa forme généralisée.	$h: x \longmapsto ax + b \ (a; b \in \mathbb{R})$
Chercher l'ordonnée du point d'intersection de la droite avec l'axe vertical pour trouver la valeur de <i>b</i> (ordonnée à l'origine).	Point d'intersection: (0 ; 2). Donc ici b = 2.
Trouver les coordonnées d'un deuxième point de la droite \hat{h} . Choisir, si possible, un point dont les coordonnées sont entières.	Par exemple le point (2 ; 1).
Calculer la pente de la droite \hat{h} à l'aide des coordonnées des deux points précédemment déterminées.	$\frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - 2}{2 - 0} = \frac{-1}{2} = -\frac{1}{2}$ Donc ici, $a = -\frac{1}{2}$.
Noter l'expression fonctionnelle de cette fonction affine.	$h: x \longmapsto -\frac{1}{2}x + 2$

Définitions

Cas particuliers de la fonction affine


• Une **fonction linéaire** est une fonction affine pour laquelle b = 0. Son expression fonctionnelle est de la forme $x \mapsto ax$ ($a \in \mathbb{R}$). La représentation graphique d'une fonction linéaire est une droite qui passe par l'origine des axes.

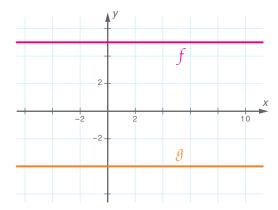
Le nombre réel a s'appelle le facteur de linéarité (ou coefficient de linéarité). Il représente la pente de la droite.

Exemples

$$g: x \longmapsto x$$

$$h: x \longmapsto 0.5x$$

Remarque

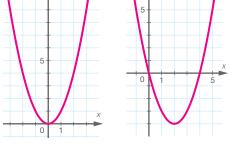

Toute relation de proportionnalité entre deux grandeurs peut être représentée par une fonction linéaire.

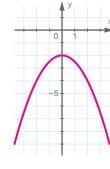
Définition

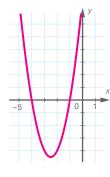
Une fonction constante est une fonction affine dont l'expression fonctionnelle est de la forme $\mathbf{x} \longmapsto \mathbf{b}$ ($b \in \mathbb{R}$). Sa pente est nulle (a = 0). La représentation graphique d'une fonction constante est une droite parallèle à l'axe des abscisses.

Exemples

$$f: x \longmapsto 5$$


Pente (p. 60)


Fonction quadratique


Définitions

- Une fonction quadratique est une fonction de la forme $x \mapsto ax^2 + bx + c$
- La représentation graphique d'une fonction quadratique est une **parabole**.

Exemples

$$x \longmapsto x^2$$

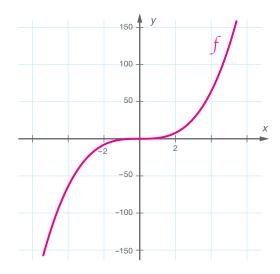
$$x \longmapsto x^2 - 4x$$

$$x \longmapsto x^2$$
 $x \longmapsto x^2 - 4x$ $x \longmapsto -0.5x^2 - 2$
 $(a = 1; b = 0; c = 0)$ $(a = 1; b = -4; c = 0)$ $(a = -0.5; b = 0; c = -2)$

$$x \longmapsto 2x^2 + 10x + 8$$

(a = 2; b = 10; c = 8)

Quadratique: du latin quadratus, carré.

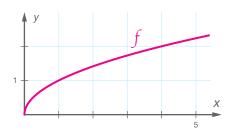

Fonction cubique

Définition

Une **fonction cubique** est une fonction de la forme $x \longmapsto ax^3$ ($a \neq 0$; $a \in \mathbb{R}$).

Exemple

$$f: x \longmapsto x^3$$


Fonction racine carrée

Définition

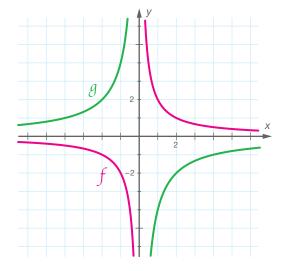
La fonction racine carrée est une fonction de la forme $x \mapsto \sqrt{x} \ (x \ge 0)$.

Exemple

$$f: x \longmapsto \sqrt{x}$$

FA

Fonction homographique


Définitions

- Les fonctions de la forme $x \longmapsto \frac{a}{x}$ ($a \neq 0$; $x \neq 0$; $a \in \mathbb{R}$) sont des **fonctions homographiques**.
- Leur représentation graphique est une hyperbole.
- Une hyperbole comporte deux branches.

Exemples

$$f: x \longmapsto \frac{2}{x} (x \neq 0)$$

$$g: x \longmapsto \frac{-4}{x} \quad (x \neq 0)$$

Proportionnalité

Généralités

Définition

Deux grandeurs sont proportionnelles si l'on peut calculer les valeurs de l'une en multipliant (ou en divisant) les valeurs de l'autre par un même nombre non nul. Ce nombre est appelé **facteur de proportionnalité** (ou facteur de linéarité).

Remarque

Le tableau présentant des valeurs de grandeurs proportionnelles est appelé **tableau de proportionnalité**.

Exemples

- A une même pompe, le prix à payer et la quantité d'essence achetée sont proportionnels.
 En effet, pour obtenir le prix à payer on multiplie la quantité d'essence (en l) par le prix d'un litre.
 On dit aussi que le prix à payer est proportionnel à la quantité d'essence achetée ou que la quantité d'essence est proportionnelle au prix à payer.
- O Le périmètre d'un carré est proportionnel à la longueur de son côté.

Longueur du côté	3	6	С	
Périmètre	12	24	4c	K.4

Le facteur de proportionnalité est 4.

 Les grandeurs composées suivantes correspondent toutes à des situations de proportionnalités: pourcentage, échelle, vitesse moyenne, masse volumique.

Contre-exemples

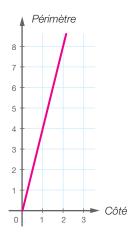
- L'âge d'une personne n'est pas proportionnel à sa taille. En effet, il n'y a pas de facteur de proportionnalité qui permette de passer de l'âge de la personne à sa taille.
- O L'aire d'un carré n'est pas proportionnelle à la longueur de son côté.

Côté du carré	2	3	С
Aire du carré	4 (2	9	c ²

Il n'y a pas de facteur de proportionnalité permettant de passer du côté du carré à son aire.

Remarque

La fonction associée à une situation de proportionnalité est une fonction linéaire.


Exemple

Le périmètre d'un carré et la longueur d'un de ses côtés est une situation de proportionnalité (cf. ci-dessus).

Elle peut être représentée par la fonction qui associe $f: c \mapsto 4c$.

C'est bien une fonction linéaire.

Sa représentation est dans ce cas une demi-droite qui passe par l'origine du repère puisqu'il n'y a que des valeurs positives.

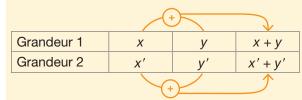
Propriété 1

Dans un tableau de proportionnalité, il y a **égalité des rapports**. Une égalité de deux rapports est une proportion.

Grandeur 1	X	у	Z	c est le facteur de
Grandeur 2	X'	y'	Z'	proportionnalité.

On a: $\frac{X'}{X} = \frac{y'}{y} = \frac{z'}{z} = c$.

Exemple


Dans le tableau de proportionnalité suivant, exprimant le prix des abricots en fonction du poids, on a bien l'égalité des rapports.

Quantité d'abricots en kg	4	7	13	7
Prix en francs	20	35	65	€.3

On a: $\frac{20}{4} = \frac{35}{7} = \frac{65}{13} = 5$.

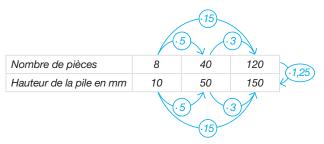
Propriété 2

Si les grandeurs 1 et 2 sont proportionnelles, on peut utiliser la **propriété de la somme** illustrée par le tableau ci-dessous.

Exemple

Dans le tableau de proportionnalité suivant exprimant la hauteur d'une pile de pièces de 50 centimes en fonction du nombre de pièces, la propriété de la somme est bien vérifiée.

	(-			
Nombre de pièces	8	20	28	(125)
Hauteur de la pile en mm	10	25	35	K 1,20
	(-	+)	\bigcirc	


Propriété 3

Les grandeurs 1 et 2 sont proportionnelles, on peut utiliser la **propriété du produit** illustrée par le tableau ci-dessous.

	(-	k)
Grandeur 1	Х	kx
Grandeur 2	X'	kx'
	(k) 1

Exemple

Dans le tableau de proportionnalité suivant exprimant la hauteur d'une pile de pièces 50 centimes en fonction du nombre de pièces, la propriété du produit est bien vérifiée.

Remarque

Pour savoir si deux grandeurs sont proportionnelles on peut:

- · Chercher s'il existe un facteur de proportionnalité.
- Représenter graphiquement la situation pour voir s'il s'agit d'une droite passant par l'origine.
- Fonction linéaire (p. 52), Pourcentage (p. 58), Echelle (p. 59), Pente (p. 60), Vitesse moyenne (p. 61), Masse volumique (p. 62), Débit (p. 63)

Résoudre un problème de proportionnalité

Pour toutes ces méthodes, il faut s'assurer avant tout qu'il y a bien proportionnalité entre les deux grandeurs en jeu de l'énoncé, ce qui est bien le cas dans les exemples qui suivent.

Méthode 1 A l'aide de la propriété du produit.

Exemple 5 croissants coûtent 6 francs. Quel est le prix de 15 croissants?

ÉTAPE 1	
Peut-on trouver facilement la grandeur cherchée à l'aide de la propriété du produit?	Oui, 15 = 3 · 5. 15 croissants coûtent trois fois plus cher que 5 croissants.
Appliquer la propriété du produit des grandeurs.	Prix de 15 croissants (en francs): $3 \cdot 6 = 18$

Méthode 2 A l'aide de la propriété de la somme.

Exemple 5 croissants coûtent 6 francs et 6 croissants coûtent 7.20 francs.
Quel est le prix de 11 croissants?

ÉTAPE 1	
Peut-on trouver la grandeur cherchée à l'aide de la propriété de la somme?	Oui, 11 = 5 + 6. Le prix de 11 croissants est la somme du prix de 5 croissants et du prix de 6 croissants.
Appliquer la propriété de la somme des grandeurs.	Prix de 11 croissants (en francs): 6 + 7,2 = 13,2

Méthode 3 A l'aide du retour à l'unité.

Exemple 5 croissants coûtent 6 francs. Quel est le prix de 3 croissants?

ÉTAPE 1	
Chercher la valeur de l'unité pour l'une des deux grandeurs.	On calcule le prix de 1 croissant. 6 : 5 = 1,2 1 croissant coûte 1.20 franc.
Multiplier la valeur de l'unité par la quantité recherchée.	Prix de 3 croissants (en francs): $3 \cdot 1,2 = 3,6$

Méthode 4

A l'aide du facteur de proportionnalité.

Exemple 5 croissants coûtent 6 francs. Quel est le prix de 7 croissants?

Faire un tableau de proportionnalité et chercher le facteur de proportionnalité.	Le facteur de proportionn	alité es	$t: \frac{6}{5} = 1,2$	
chercher le facteur de proportionnante.	Nombre de croissants	5	7	
	Prix des croissants	6	(1,2)	
ÉTAPE 2				
Compléter le tableau en utilisant le facteur de proportionnalité.	Nombre de croissants	5	7	
	Prix des croissants	6	$7 \cdot 1,2 = 8,4$	
	Donc le prix de 7 croissan	its est o	de 8.40 francs.	

Méthode 5

A l'aide de la propriété de l'égalité des rapports.

Exemple 5 croissants coûtent 6 francs. Quel est le prix de 9 croissants?

Ecrire une proportion en utilisant la propriété de l'égalité des rapports.	$\frac{5}{6} = \frac{9}{x}$
Appliquer la propriété de l'égalité des rapports et résoudre l'équation. Remarque Pour écrire la proportion correctement, on peut s'aider d'un tableau de proportionnalité.	$\frac{5}{6} = \frac{9}{x}$ $5 \cdot x = 9 \cdot 6 donc x = \frac{54}{5} = 10.8$ Donc le prix de 9 croissants est de 10.80 francs.

58

Définition

Un **pourcentage** est un facteur de proportionnalité entre deux grandeurs, une **«partie»** et un **«tout»** qui est fixé à 100.

Par conséquent, ce facteur s'exprime sous la forme d'une fraction dont le dénominateur est égal à 100.

Notation

 $\frac{20}{100}$ est un pourcentage qui se note 20 % et qui se lit «vingt pour-cent».

$$20\% = \frac{20}{100} = 0,20$$

Exemple

Dire qu'il y a 20 % de chocolat dans un gâteau signifie:

- Ou'il y a proportionnalité entre la masse de chocolat (la partie) et la masse de gâteau (le tout).
- Ou'il y a 20 g de chocolat pour 100 g de gâteau. Par conséquent, $20\% = \frac{20}{100} = 0,20$ est le facteur de proportionnalité qui permet de passer du tout à sa partie.

Remarques

 Pour calculer le pourcentage d'un nombre, on peut utiliser un tableau de proportionnalité, mais comme on connaît le facteur de proportionnalité (le pourcentage), on peut directement multiplier ce nombre par le pourcentage.

Exemple

Dans un pot de yoghourt de 180 grammes, il y a 4 % de matières grasses. Quelle est la quantité de matières grasses, en grammes, dans ce pot?

$$180 \cdot \frac{4}{100} = 180 \cdot 0.04 = 7.2$$

La quantité de matières grasses de ce pot est de 7,2 g.

Le tout peut aussi être fixé à 1000. On parle alors de ‰ (pour-mille).

Exemple

Le taux de natalité en Suisse en 2016 était de 10,5 %.

---- Proportionnalité (p. 55)

Déterminer un pourcentage

Méthode

A l'aide de la propriété du produit.

Exemple Dans un village de 600 habitants, il y a 210 habitants de langue française. Quel est le pourcentage d'habitants de langue française dans ce village?

ETAPE 1	
Identifier la «partie» et le «tout».	La «partie»: les habitants de langue française.
	Le «tout»: les habitants du village.
ÉTAPE 2	
Chercher le facteur de proportionnalité en divisant la partie par le tout.	$\frac{210}{600} = 0.35$
ÉTAPE 3	
Ecrire le résultat sous forme d'une fraction dont le dénominateur est 100.	$0.35 = \frac{35}{100}$
raction dont le denominateur est 100.	100
ÉTAPE 4	
Conclure.	Le pourcentage d'habitants de langue française dans ce
	village est de 35 %.

FA

Définition

Lorsque les dimensions d'une reproduction (plan, carte, maquette, dessin, photo, etc.) et les dimensions réelles sont proportionnelles, on appelle échelle le rapport d'une longueur mesurée sur le plan par la longueur réelle correspondante, exprimée dans la même unité.

Echelle = Longueur mesurée sur la reproduction (plan, carte, etc.)

Longueur réelle

Remarques

- Si l'échelle est inférieure à 1, la reproduction est une réduction de la réalité.
- Si elle est supérieure à 1, la reproduction est un agrandissement de la réalité.
- · L'échelle n'a pas d'unité, c'est un facteur de proportionnalité.

Exemples

Echelle: 1:50000 ou $\frac{1}{50000}$

La carte topographique est une réduction de la réalité. Chaque dimension réelle a été divisée par 50 000.

Echelle: 10:1 ou $\frac{10}{1}$

Le dessin du coléoptère est un agrandissement de la réalité. Chaque dimension réelle a été multipliée par 10.

- Une échelle peut être exprimée de plusieurs manières:
 - Par un quotient
- o Par un dessin
- o Par une indication du type

Exemples

1:50000 ou $\frac{1}{50000}$

0 1000 m

- «2 cm sur la carte correspondent à 1 km en réalité»
- L'échelle permet de mettre en relation la distance mesurée sur une carte, un dessin, etc. avec la distance réelle. Il est donc possible de calculer l'une de ces grandeurs quand on connaît les deux autres.
- Proportionnalité (p. 55), Calcul de la mesure d'une grandeur à partir d'une formule (p. 83)

Déterminer l'échelle d'une reproduction de la réalité

Méthode

Exemple Sur une carte, une distance de 3 km est représentée par une distance de 12 cm. Quelle est l'échelle de cette carte?

ÉTAPE 1	Quelle est i conolle de cette carte :
Ecrire la formule de l'échelle.	Echelle = Longueur mesurée sur la carte Longueur réelle
Exprimer les longueurs dans la même unité.	3 km = 300 000 cm
Appliquer la formule et exprimer l'échelle sous la forme d'une fraction dont: – le numérateur est égal à 1 dans le cas d'une réduction; – le dénominateur est égal à 1 dans le cas d'un agrandissement.	Echelle = $\frac{12}{300000} = \frac{1}{25000}$
Conclure.	L'échelle de la carte est 1:25000.

Définition

La **pente moyenne** d'un terrain, d'une route, etc. est le rapport de la dénivellation (différence d'altitude) par la distance horizontale, exprimée dans la même unité.

Pente =
$$\frac{\text{Dénivellation}}{\text{Distance horizontale}}$$

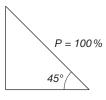
Remarques

• Une pente s'exprime généralement à l'aide d'un pourcentage.

Quand une pente est constante, il y a proportionnalité entre la dénivellation et la distance horizontale.

 La pente n'a pas d'unité, c'est un coefficient de proportionnalité.

Le panneau ci-contre indique que, en moyenne, sur ce tronçon de route pour une distance horizontale de 100 m, la dénivellation est de 10 m.


Dénivellation

- · La pente peut aussi s'exprimer en degrés.
 - Il n'y a pas proportionnalité entre la pente exprimée en pour-cent et en degré.

Exemple

Une pente de 100 % correspond à un angle de 45°, mais une pente de 50 % ne correspond pas à un angle de 22,5°, mais à un angle d'environ 26,5°.

- La pente permet de mettre en relation la dénivellation et la distance horizontale d'une route. Il est donc possible de calculer l'une de ces grandeurs quand on connaît les deux autres.
- d'une grandeur à partir d'une formule (p. 83), Degré (angle) (p. 101)

Distance horizontale

Déterminer la pente moyenne

Méthode

Exemple A l'aide d'une carte, on constate que sur une distance horizontale de 2,5 km, la dénivellation d'une route est de 150 m. Quelle est la pente moyenne de ce tronçon de route?

Ecrire la formule de la pente.	Pente = Dénivellation Distance horizontale
Exprimer les longueurs dans la même unité.	2,5 km = 2500 m
Appliquer la formule et exprimer la pente sous forme d'un pourcentage.	Pente = $\frac{150}{2500}$ = 0,06 = 6%
Conclure.	La pente moyenne est de 6%.

Vitesse moyenne

Définition

La **vitesse moyenne** v d'un mobile est le rapport entre la distance parcourue d et la durée du parcours t, appelé aussi temps du parcours.

$$v = \frac{d}{t}$$

Unités usuelles: km/h et m/s.

Remarques

 Quand la vitesse est constante, il y a proportionnalité entre la distance parcourue et le temps de parcours.

Exemple

Une voiture qui roule à la vitesse moyenne de 70 km/h signifie qu'en une heure elle parcourt 70 km. Donc en 2 heures elle parcourt 140 km.

- Dans le langage courant, on parle tout autant de durée de parcours que de temps de parcours d'où le *t* dans la formule.
- La vitesse permet de mettre en relation la distance parcourue et le temps de parcours. Il est donc possible de calculer l'une de ces grandeurs quand on connaît les deux autres.

Exemples de quelques vitesses

- Vitesse maximale de chute libre (parachutiste): de l'ordre de 70 m/s soit environ 250 km/h.
- O Vitesse du son dans l'air: 343 m/s soit environ 1200 km/h.
- O Vitesse de la lumière dans le vide: 300 000 km/s.
- Proportionnalité (p. 55), Calcul de la mesure d'une grandeur à partir d'une formule (p. 83)

Déterminer la vitesse moyenne

Méthode

Exemple Un piéton parcourt 7 km en 1 h 24 min Quelle est sa vitesse moyenne en km/h?

ÉTAPE 1	
Ecrire la formule de la vitesse.	$v = \frac{Distance\ parcourue}{Dur\'ee\ de\ parcours} = \frac{d}{t}$
Exprimer la distance et le temps dans les unités demandées.	d = 7 km $t = 1 h 24 min = 1,4 h$
Appliquer la formule.	$v en km/h = \frac{7}{1,4} = 5$
Conclure.	La vitesse moyenne du piéton est de 5 km/h.

Définition

La **masse volumique moyenne** ρ d'un objet ou d'une substance est égale au rapport de sa masse m et son volume V.

$$\rho = \frac{m}{V}$$

Unités usuelles: kg/m³ ou g/cm³.

Remarques

• Quand l'objet ou la substance est homogène, il y a proportionnalité entre sa masse et son volume.

Exemple

Si l'on dit qu'un objet ou une substance a une masse volumique de 15 g/cm³, cela signifie que 1 cm³ de cet objet ou de cette substance a une masse de 15 g.

Donc pour 10 cm³, cet objet ou cette substance a une masse de 150 g.

 La masse volumique permet de mettre en relation la masse et le volume d'un objet. Il est donc possible de calculer l'une de ces grandeurs quand on connaît les deux autres.

Exemples de masses volumiques

Eau pure: 1000 kg/m³ = 1 kg/l
 Air (à 0°): 1,29 kg/m³ = 1,29 g/l

Fer: 7690 kg/m³
 Sapin: 500 kg/m³

Proportionnalité (p. 55), Calcul de la mesure d'une grandeur à partir d'une formule (p. 83)

Déterminer la masse volumique d'un objet

Méthode

Exemple Une plaque de granit de 2,5 m³ a une masse de 6,5 t. Quelle est la masse volumique de ce granit en kg/m³?

Ecrire la formule de la masse volumique.	$\rho = \frac{\textit{Masse}}{\textit{Volume}} = \frac{\textit{m}}{\textit{V}}$
Exprimer la masse et le volume dans les unités demandées.	6,5 t = 6500 kg
Appliquer la formule.	$\rho \text{ en } kg/m^3 = \frac{6500}{2,5} = 2600$
Conclure.	La masse volumique du granit est de 2600 kg/m ³ .

Débit

Définition

Le **débit moyen** d d'un liquide (ou d'une matière) qui s'écoule est égal au rapport du volume V de liquide (ou de la quantité de matière) par la durée de l'écoulement t.

$$d = \frac{V}{t}$$

Les unités usuelles de débit dépendent de la matière qui s'écoule:

- s'il s'agit de liquide, on utilise souvent le m³/s, le l/s;
- s'il s'agit d'information (comme pour internet), on utilise le kb/s ou Kbps qui est le kilobit par seconde.

Remarques

• Quand le débit est constant, il y a proportionnalité entre le volume et la durée de l'écoulement.

Exemple

Le débit moyen du Rhône est de 165 m³/s à l'entrée du lac Léman. Cela signifie qu'en une seconde, il s'écoule 165 m³ d'eau soit 165 000 l. Donc en 10 secondes, il s'écoulera 1650 000 litres d'eau.

- Le débit permet de mettre en relation le volume d'un écoulement et une durée. Il est donc possible de calculer l'une de ces grandeurs quand on connaît les deux autres.

Déterminer le débit

Méthode

Exemple Un robinet remplit un jerrican de 20 l en 2 minutes 13 secondes. Quel est le débit de ce robinet en l/s?

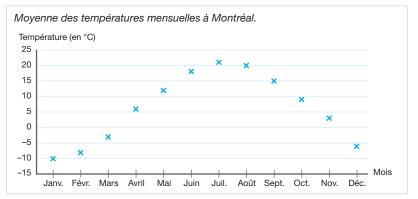
Ecrire la formule du débit.	$d = \frac{Volume}{Dur\'{e}e \ de \ l\'{e}coulement} = \frac{V}{t}$
Exprimer le volume et la durée dans les unités demandées.	t = 2 min 13 s = 133 s
Appliquer la formule.	$d \text{ en I/s} = \frac{20}{133} \approx 0.15$
Conclure.	Le débit de ce robinet est de 0,15 l/s.

Diagrammes

Diagramme

Définition

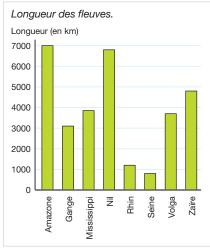
Un **diagramme** est une représentation graphique d'une ou plusieurs séries de données.


Il permet de visualiser les informations recueillies ou les prévisions d'évolution d'un phénomène.

Il existe plusieurs types de diagrammes.

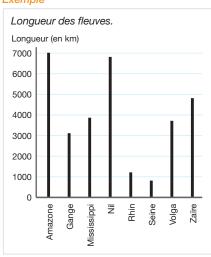
Le diagramme cartésien

Le diagramme cartésien est constitué d'un ensemble de points dont les coordonnées correspondent aux données à représenter.


Exemple

Le diagramme en colonnes

Dans un diagramme en colonnes, toutes les colonnes ont la même largeur; les hauteurs des colonnes sont proportionnelles aux mesures des grandeurs représentées.


Exemple

Le diagramme en bâtons

Dans un diagramme en bâtons, les hauteurs des bâtons sont proportionnelles aux mesures des grandeurs représentées.

Exemple

Le diagramme en barre

Dans un diagramme en barre, les longueurs des parties sont proportionnelles aux mesures des grandeurs représentées.

Exemple

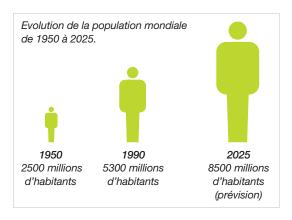
Répartition des activités d'un élève durant 24 h.							
Ecole Ecole Loisirs Autre							
1 h	7 h	2 h	8 h	3 h	3 h		

Le diagramme circulaire

Dans un diagramme circulaire, le rayon du cercle peut être choisi arbitrairement; les mesures des angles des différentes parties sont proportionnelles aux mesures des grandeurs représentées.

Exemple

Remarque


Le diagramme en barre et le diagramme circulaire servent à représenter les parties (ici la durée de chaque activité) par rapport à un tout (ici 24 h).

Le diagramme figuratif

Dans un diagramme figuratif, l'une des dimensions des figures est proportionnelle aux mesures des grandeurs représentées.

Exemple

Dans le diagramme figuratif ci-contre, il y a proportionnalité entre la hauteur des personnages et la population mondiale.

Remarque

Un diagramme figuratif est généralement ambigu, car il incite à comparer les aires des figures et non leurs longueurs uniquement.

Diagramme: du grec diagramma, figure dessinée, dessin.

Représentation graphique (p. 46), Proportionnalité (p. 55), Aire des surfaces usuelles (p. 165)

FA

FA

Construire un diagramme circulaire

Méthode

Exemple Représenter la situation suivante à l'aide d'un diagramme circulaire.

On a demandé aux élèves d'une même classe d'un collège quel était leur sport préféré. Voici les réponses obtenues:

Sport	Ski	Football	Basket	Tennis	Volley	Natation
Nb. de voix	8	5	4	3	2	2

Trouver l'effectif total.	Le nombre total des voix exprimées: 8+5+4+3+2+2=24							
ÉTAPE 2								
A l'aide d'un tableau de			S	F	В	Т	V	N
proportionnalité, calculer la valeur des angles en jeu.	Nb. de voix	24	8	5	4	3	2	2
(Vérifier que la somme des angles soit égale à 360°.)	Mesure de l'angle en °	360	120	75	60	45	30	30
ÉTAPE 3								
Construire un cercle de centre O et tracer un rayon.								
A l'aide d'un rapporteur, construire successivement les différents secteurs de centre O en jeu et les nommer.		7	Volley Baske		Footba	Ski II		

Proportionnalité (p. 55), Mesurer un angle à l'aide d'un rapporteur (p. 102)

Calcul littéral

Expression littérale

Définition

Une **expression littérale** est une expression mathématique qui contient une ou plusieurs lettres appelées **variables**, **inconnues** ou **indéterminées**, suivant le contexte.

Exemples

$$x$$
; $2 \cdot (y+5)$; $4,8-a+b$; $\frac{x^2}{3}+3x$; $\frac{1}{z}$; $2y$; ... sont des expressions littérales.

Les expressions littérales sont utiles pour:

- établir des formules, des expressions fonctionnelles dans ce cas, la lettre est appelée «variable»;
- résoudre des problèmes à l'aide d'équations dans ce cas, la lettre est appelée «inconnue»;
- prouver des conjectures sur les nombres dans ce cas, la lettre est appelée «indéterminée».

Remarque

Une expression littérale « en fonction de x » est une expression qui contient la lettre x.

Exemple

Les expressions littérales $2 \cdot (x + 3)$ ou 3 + 3 + x + x expriment le périmètre du rectangle en « fonction de x».

Alléger l'écriture d'expressions littérales

Des conventions d'écriture, des propriétés et des définitions permettent d'alléger les écritures des expressions littérales.

Conventions d'écritures	Exemples
On peut supprimer le signe de la multiplication entre:	
 Un nombre et une lettre lorsque le nombre est devant la lettre. 	$5 \cdot y = 5y$
 Un nombre et une parenthèse lorsque le nombre est devant la parenthèse. 	$3\cdot(x+y)=3(x+y)$
 Une lettre et une parenthèse lorsque la lettre est devant la parenthèse. 	$a\cdot(b+5)=a(b+5)$

Propriétés et définitions		
$1 \cdot a = a$	$0 \cdot a = 0$	$(-1) \cdot a = -a$
$a \cdot a = a^2$	$a \cdot a \cdot a = a^3$	

Egalité de deux expressions littérales

Définition

68

Deux expressions littérales sont égales si elles donnent le même résultat quelle que soit la valeur numérique attribuée à chacune des lettres qui figurent dans ces deux expressions.

Conséquences • Pour prouver que deux expressions littérales sont égales, on les réduit à l'aide des propriétés des opérations et des règles de priorité jusqu'à obtenir des expressions littérales identiques.

Exemple

Soit A = 5m + 11 + 2(m - 3) et B = 7m + 5. Ces deux expressions sont égales, en effet:

$$A = 5m + 11 + 2 (m - 3)$$

$$A = 5m + 11 + 2m - 6$$

$$A = 5m + 2m + 11 - 6$$

$$A = 7m + 5$$

On peut donc conclure que A = B.

· Pour prouver que deux expressions littérales ne sont pas égales, il suffit de trouver une valeur numérique pour laquelle ces expressions donnent des résultats différents.

A = 5 + 3x et B = 8x ne sont pas des expressions littérales égales, car pour x = 4, A vaut $5 + 3 \cdot 4 = 17$ et B vaut $8 \cdot 4 = 32$.

Monôme

Définitions

- Un monôme est une expression littérale qui est égale au produit d'un nombre réel par une ou des lettres dont le ou les exposants sont des entiers naturels.
- Le nombre est appelé coefficient du monôme.
- Le produit des lettres est appelé partie littérale du monôme.

Exemples

Monôme	4x²y	5 <i>x</i>	7	у	$\frac{a^2b}{4}$	$-\frac{z}{2}$
Coefficient	4	5	7	1 (car $y = 1y$)	<u>1</u>	$-\frac{1}{2}$
Partie littérale	x^2y	х	Par exemple x^0 car $7 = 7x^0$	у	a²b	Z

Par contre, $\frac{5}{x}$; \sqrt{x} ; x + 5 ne sont pas des monômes.

Degré d'un monôme

Définition

Le degré d'un monôme est égal à la somme des exposants de sa partie littérale.

Exemples

Le degré du monôme $5x^2$ est 2.

Le degré du monôme $4x^2y$ est 2 + 1 = 3; en effet, $4x^2y = 4x^2y^1$.

Le degré du monôme 7 est 0 ; en effet, $7 = 7x^0$, par exemple.

Multiplication de monômes

Définition

Pour multiplier deux monômes, on multiplie leurs coefficients entre eux et leurs parties littérales entre elles.

Exemples

$$3x \cdot 5y^{2} = 3 \cdot x \cdot 5 \cdot y^{2} = 3 \cdot 5 \cdot x \cdot y^{2} = 15xy^{2}$$

$$-2x^{3}y^{2} \cdot 4x^{2}y = -2 \cdot x^{3} \cdot y^{2} \cdot 4 \cdot x^{2} \cdot y = -2 \cdot 4 \cdot x^{3} \cdot x^{2} \cdot y^{2} \cdot y = -8x^{5}y^{3}$$

— Monômes semblables

Définition

Deux monômes sont semblables s'ils ont la même partie littérale.

Exemples

o $5x^2y$ et $-3x^2y$ sont des monômes semblables, car ils ont la même partie littérale: x^2y . o -7x et x sont des monômes semblables, car ils ont la même partie littérale: x.

Contre-exemples

5x² et 5x
 ne sont pas des monômes semblables, car ils n'ont pas la même partie littérale: x² n'étant pas égal à x.
 7x²y et 7xy²
 ne sont pas des monômes semblables, car ils n'ont pas la même partie littérale: x²y n'étant pas égal à xy².

Addition ou soustraction de monômes semblables

Définition

Pour additionner (ou soustraire) deux monômes semblables:

- On additionne (ou soustrait) leurs coefficients.
- On conserve la partie littérale.

Exemples

$$4x^{2} + 7x^{2} = (4+7) \cdot x^{2}$$

$$= 11x^{2}$$

$$2x^{2}y - 9x^{2}y = (2-9)x^{2}y$$

$$= -7x^{2}y$$

⚠ La somme $4 + 5x^2$ ne peut pas être réduite, car les monômes 4 et $5x^2$ ne sont pas des monômes semblables.

Polynôme

Définition

Un polynôme est une somme de monômes.

Ces monômes sont appelés les termes du polynôme.

Exemples

$$\frac{y}{2}+4$$
; $-x^2+1.5z$; $4xy^2-2y$; $5x^3$; ... sont des polynômes.
Par contre, $\frac{5}{x}$ n'est pas un polynôme, car $\frac{5}{x}$ n'est pas un monôme.

Remarque Un polynôme peut être composé d'un seul ou de plusieurs monômes.

Exemples

 $x^3 - 4x^2 + 2x - 1$ est un polynôme formé de quatre termes. $3x^2y$ est un polynôme formé d'un seul terme, c'est aussi un monôme. x - y est un binôme. $x^2 + 2x + 1$ est un trinôme.

--- Monôme (p. 68)

Réduction d'un polynôme

Définition

Pour réduire un polynôme, on additionne (ou soustrait) ses monômes semblables.

Exemples

$$2x^{2}-4x+5x^{2}+x = 2x^{2}+5x^{2}-4x+x = 7x^{2}-3x$$
forme réduite
$$w^{2}+3+5w-2w^{2}-8+w = w^{2}-2w^{2}+5w+w+3-8 = -w^{2}+6w-5$$
forme réduite

Monômes semblables (p. 69)

O Degré d'un polynôme

Définition

Le **degré d'un polynôme** est le degré le plus élevé de ses monômes une fois ce polynôme réduit.

Exemples

$$x + \frac{x^2}{5}$$
 est un polynôme de degré 2 (le monôme de plus haut degré est $\frac{x^2}{5}$).
 $-2a^3 + a^3b - 4,4$ est un polynôme de degré 4 (le monôme de plus haut degré est a^3b).

Définition

Ordonner un polynôme par rapport à l'une de ses lettres, c'est le réduire puis écrire ses monômes dans l'ordre croissant ou décroissant de leur degré.

Exemples

$$5m^2 + 2m - 1$$
 est un polynôme ordonné dans l'ordre décroissant des puissances de m. $-2 + a^3 + 2ab - a^2b^3 + b^4$ est un polynôme ordonné dans l'ordre croissant des puissances de b. $x^3 + 1 + x^2 + x$ est un polynôme qui n'est pas ordonné.

Addition de polynômes

Définition

Pour additionner deux polynômes, on additionne chaque terme de ces polynômes.

Propriété

Dans une expression littérale, on peut supprimer les parenthèses si elles ne sont précédées d'aucun signe ou du signe «+» et qu'elles ne sont pas suivies d'un signe «·», «:» ou d'une parenthèse.

Exemples

$$(5x^2-x)+(2x^2+9x-10)$$

= $5x^2-x+2x^2+9x-10$ Suppression des parenthèses précédées du signe +.
= $7x^2+8x-10$ Réduction du polynôme.
 $3x+(-2x+2)$ Suppression des parenthèses précédées du signe +.
= $x+2$ Réduction du polynôme.

- ⚠ Dans l'expression $3x + (5x 2) \cdot 3$, on ne peut pas enlever les parenthèses avant d'avoir développé le produit $(5x 2) \cdot 3$ (priorité des opérations).
- Priorités des opérations (p. 26), Polynôme (p. 69)

Polynômes opposés

Définition

Deux polynômes opposés sont deux polynômes dont la somme est égale à zéro.

Exemples

$$6x^2$$
 et $-6x^2$ sont deux polynômes opposés, car $6x^2 + (-6x^2) = 6x^2 - 6x^2 = 0$.
 $y^2 + 5y - 12$ et $-y^2 - 5y + 12$ sont opposés, car $(y^2 + 5y - 12) + (-y^2 - 5y + 12)$
 $= y^2 + 5y - 12 - y^2 - 5y + 12 = 0$.

Soustraction de polynômes

Définition

Pour soustraire un polynôme, on additionne son opposé.

Exemples

$$4y^3 - 2y + 5 - (3y^2 - 2y - 4)$$

= $4y^3 - 2y + 5 + (-3y^2 + 2y + 4)$ Addition de l'opposé.
= $4y^3 - 2y + 5 - 3y^2 + 2y + 4$ Suppression des parenthèses précédées du signe +.
= $4y^3 - 3y^2 + 9$ Addition des monômes semblables.

Conséquence Soustraire un polynôme, c'est soustraire chaque terme de ce polynôme.

$$-6x^{2} - 5x - 8 - (-3x^{2} + 10x - 16)$$

$$= -6x^{2} - 5x - 8 - (-3x^{2}) - (+10x) - (-16)$$

$$= -6x^{2} - 5x - 8 + 3x^{2} - 10x + 16$$

$$= -3x^{2} - 15x + 8$$

Somme ou produit d'une expression littérale

Définitions

Pour savoir si une expression littérale est une somme ou un produit, on regarde dans cette expression la dernière opération à effectuer en respectant les règles de priorité des opérations.

- Si c'est une addition ou une soustraction, l'expression est une somme.
- Si c'est une multiplication ou une division, l'expression est un produit.

Exemples

est une somme, car on doit d'abord effectuer la multiplication $10 + 3x \cdot 5$ et donc la dernière opération à effectuer est une addition. $(10 + 3x) \cdot 5$ est un produit, la dernière opération à effectuer est une multiplication.

Multiplication de polynômes

Propriété 1 Pour multiplier un monôme par un polynôme, on distribue ce monôme sur chacun des termes du polynôme.

Exemples

$$2a \cdot (a - x) = 2a \cdot a - 2a \cdot x = 2a^{2} - 2ax$$

$$-2a \cdot (ab - xy + z) = (-2a) \cdot ab - (-2a) \cdot xy + (-2a) \cdot z = -2a^{2}b + 2axy - 2az$$

Propriété 2 Pour multiplier un polynôme par un polynôme, on multiplie chaque terme du premier par chaque terme du second puis on réduit la somme obtenue lorsque c'est possible.

Exemple

$$(y-2) \cdot (2x+y-5) = y \cdot 2x + y \cdot y + y \cdot (-5) + (-2) \cdot (2x) + (-2) \cdot y + (-2) \cdot (-5)$$

$$= y \cdot 2x + y \cdot y - y \cdot 5 - 2 \cdot 2x - 2y + 2 \cdot 5$$

$$= 2xy + y^2 - 5y - 4x - 2y + 10$$

$$= 2xy + y^2 - 7y - 4x + 10$$

Conséquence Quels que soient les monômes a, b, c et d, $(a+b)\cdot(c+d)=ac+ad+bc+bd$.

Cette égalité est appelée **double distributivité**.

---- Monôme (p. 68), Polynôme (p. 69)

Produits remarquables

Propriétés Quels que soient les monômes a et b :

$$(a + b)^{2} = a^{2} + 2ab + b^{2}$$
$$(a - b)^{2} = a^{2} - 2ab + b^{2}$$
$$(a + b) (a - b) = a^{2} - b^{2}$$

$$(x+4)^2 = x^2 + 8x + 16 \qquad (2y-1)^2 = 4y^2 - 4y + 1 \qquad \left(\frac{x}{3} - 5\right)\left(\frac{x}{3} + 5\right) = \frac{x^2}{9} - 25$$

Remarque Ces produits remarquables appelés aussi **identités remarquables** ne sont que des cas particuliers de la double distributivité.

Il est important de les repérer surtout lorsqu'on doit factoriser une expression.

$$(a-b)^2 = (a-b)(a-b) = a^2-ab-ab+b^2 = a^2-2ab+b^2$$

Développement d'un produit

Définition

Développer un produit, c'est le transformer en une somme. On utilise alors la distributivité ou les produits remarquables.

Une fois le produit développé, on réduit le polynôme lorsque c'est possible.

Exemples

Avec la distributivité: $5xy (2x-1+4y) = 10x^2y - 5xy + 20xy^2$

 $(2a+3)(a^2-2a) = 2a^3-4a^2+3a^2-6a = 2a^3-a^2-6a$

Avec un produit remarquable: $(2x + 3y)(2x - 3y) = (2x)^2 - (3y)^2 = 4x^2 - 9y^2$

Réduction d'un polynôme (p. 70), Produits remarquables (p. 72)

Développer et réduire une expression littérale

Méthode 1

En utilisant la distributivité simple et double.

Exemple Développer et réduire l'expression 2x(3x-2) - (7x+1)(10x-3).

Utiliser la distributivité pour développer chacun des produits.	2x(3x-2)-(7x+1)(10x-3)
ÉTAPE 2	$= (2x \cdot 3x - 2x \cdot 2) - (7x \cdot 10x - 7x \cdot 3 + 1 \cdot 10x - 1 \cdot 3)$
Supprimer les parenthèses autour des polynômes en utilisant les propriétés de l'addition et de la soustraction de polynômes.	$= (6x^2 - 4x) - (70x^2 - 21x + 10x - 3)$ = $6x^2 - 4x - 70x^2 + 21x - 10x + 3$
ETAPE 3 Réduire le polynôme en additionnant les monômes semblables.	$= -64x^2 + 7x + 3$

Méthode 2

En utilisant un produit remarquable.

Exemple Développer et réduire l'expression $(5x - 2y)^2$.

ÉTAPE 1		
ldentifier le produit remarquable à utiliser.	Il s'agit d'élever au carré une différence; le produit remarquable adéquat est donc: $(a-b)^2 = a^2 - 2ab + b^2$ avec $a = 5x$ et $b = 2y$	
Développer l'expression en utilisant cette formule.	$(5x - 2y)^{2} = (5x)^{2} - 2 \cdot 5x \cdot 2y + (2y)^{2}$ $= 25x^{2} - 20xy + 4y^{2}$	

Remarque

Ces méthodes peuvent se combiner.

Exemples

Développer et réduire

$$2(2x+3)(2x-3) = 2(4x^2-9)$$
 Utilisation d'un produit remarquable.
= $8x^2-18$ Distributivité.

Réduction d'un polynôme (p. 70), Produits remarquables (p. 72)

Calculer la valeur numérique d'une expression littérale connaissant la valeur de la lettre

Méthode

74

Exemple Calculer la valeur de l'expression $3x + 6x^2 - x(5 + x)$ pour x = 4.

Développer et réduire l'expression littérale.	$3x + 6x^{2} - x (5 + x) = 3x + 6x^{2} - 5x - x^{2}$ $= -2x + 5x^{2}$
Remplacer la lettre par la valeur numérique choisie en rajoutant, si nécessaire, les signes opératoires de la multiplication.	pour $x = 4$ -2 · 4 + 5 · 4 ²
Effectuer les calculs en respectant les règles de priorité.	$= -8 + 5 \cdot 16$ $= -8 + 80$ $= 72$

Priorités des opérations (p. 26), Développer et réduire une expression littérale (p. 73)

Factorisation d'une expression littérale

Définition

Factoriser, c'est transformer une somme en un produit.

Exemple

$$12a^2 - 8a + 20ab$$
 Somme de 3 monômes.
= $4a \cdot 3a - 4a \cdot 2 + 4a \cdot 5b$
= $4a (3a - 2 + 5b)$ Produit d'un monôme (4a) et d'un polynôme (3a - 2 + 5b).

Somme ou produit d'une expression littérale (p. 71)

Factoriser une expression littérale

Méthode 1

En utilisant la mise en évidence d'un monôme ab + ac = a(b + c).

Exemple Factoriser l'expression $10x^3 - 5x^2 + 5x$.

ÉTAPE 1	
Vérifier que l'expression soit sous sa forme réduite.	Les termes sont: $10x^3$, $-5x^2$ et $5x$. Il n'y a aucun monôme semblable, donc l'expression est réduite.
Y a-t-il des facteurs communs dans chaque monôme? Si oui, les mettre tous en évidence.	Le facteur commun à chaque monôme est $5x$. On peut donc le mettre en évidence: $10x^3 - 5x^2 + 5x$ $= 5x \cdot 2x^2 - 5x \cdot x + 5x \cdot 1$ $= 5x (2x^2 - x + 1)$
Contrôler qu'il n'y ait plus de facteurs communs dans la parenthèse.	Il n'y a plus de facteur commun.

Remarque

On peut vérifier la factorisation en développant le produit obtenu.

$$5x(2x^2-x+1) = 10x^3-5x^2+5x.$$

Méthode 2 En util

En utilisant la mise en évidence d'un polynôme.

Exemple Factoriser l'expression (5z-6)(8z-1)-4z(8z-1).

Repérer chacun des termes de la somme.	Les termes sont: $(5z-6)(8z-1)$ et $4z(8z-1)$
ÉTAPE 2	
Dans ces termes, y a-t-il un facteur commun?	Oui: (8z – 1)
ÉTAPE 3	
Si oui, le mettre en évidence et additionner ou soustraire les termes semblables lorsque c'est possible.	(5z-6)(8z-1)-4z(8z-1) = (8z-1)(5z-6-4z) $= (8z-1)(z-6)$
Si oui, le mettre en évidence et additionner ou soustraire les termes semblables	

Méthode 3 En u

En utilisant un produit remarquable.

Exemple Factoriser l'expression $9x^2 + 12xy + 4y^2$.

ÉTAPE 1	
Repérer les termes de la somme.	Les termes sont: $9x^2$, $12xy$ et $4y^2$.
ÉTAPE 2	
Dans ces termes, y a-t-il des facteurs communs à chacun d'entre eux?	Non.
ÉTAPE 3	
Est-il possible d'utiliser un produit	Il y a trois termes.
remarquable pour factoriser l'expression?	Deux d'entre eux sont des carrés: $9x^2$ et $4y^2$.
	On peut donc supposer que $a^2 = 9x^2$ et $b^2 = 4y^2$, donc que $a = 3x$ et $b = 2y$.
	Le troisième terme est-il égal à 2ab?
	$2 \cdot 3x \cdot 2y = 12xy.$
	Oui, on peut par conséquent écrire:
	$9x^2 + 12xy + 4y^2 = (3x + 2y)^2$

Remarque

Ces méthodes peuvent se combiner.

Exemple

$$4x^3y - 16xy = 4xy(x^2 - 4)$$
 D'abord, mise en évidence d'un facteur commun.
= $4xy(x + 2)(x - 2)$ Puis, utilisation d'un produit remarquable.

Produits remarquables (p. 72), Développer et réduire une expression littérale (p. 73)

76

Equations

Equation

Définitions

- Une équation est une égalité conditionnelle entre deux expressions littérales. En effet, cette égalité n'est pas forcément vraie: elle peut être vérifiée pour une, plusieurs ou aucune valeur numérique des lettres. Ces lettres sont appelées inconnues.
- La ou les valeurs qui vérifient l'égalité sont appelées solutions de l'équation. Résoudre une équation c'est trouver l'ensemble de ses solutions, souvent noté S.

Exemples

- o 16 est la solution de l'équation 4x = 64, car $4 \cdot 16 = 64$. On note: $S = \{16\}$.
- o (-3) et 3 sont les solutions de l'équation $x^2 = 9$, $car (-3)^2 = 9$ et $3^2 = 9$. On note: $S = \{-3, 3\}$.
- o L'équation a + 1 = a n'a pas de solution. On note alors: $S = \emptyset$ ou $S = \{\}$.
- Tous les nombres sont les solutions de l'équation 2x = 2x. On note alors: $S = \mathbb{R}$.

Remarque

La partie à gauche de l'égalité est appelée **membre de gauche** et la partie à droite, **membre de droite**.

Exemples

$$x + 3,2 = 10$$
; $a^2 - 2a - 7 = 2a - 2$; $5x + y = 18 - x$; ... sont des équations. membre de gauche de droite

Equations équivalentes

Définition

Deux équations équivalentes sont deux équations qui ont le même ensemble de solutions.

Exemples

Les équations
$$x-5=8-x$$
 et $5x=32,5$ sont équivalentes, car elles ont le même ensemble de solutions: $S=\{6,5\}$.

Les équations $10-2y=y^2+y$ et $y^2+3y-10=0$ sont équivalentes, car elles ont le même ensemble de solutions: $S=\{-5;2\}$.

Les équations $5x=15$ et $5x^2=15x$ ne sont pas équivalentes, parce que 0 est une solution de la deuxième équation sans en être une de la première.

Equation du premier degré à une inconnue

Définition

Une équation du premier degré d'inconnue x est une équation équivalente à une équation du type ax + b = cx + d.

Exemples

$$5x-6 = 3x + 4$$

 $3x-2 = 0$ $(3x-2 = 0x + 0)$
 $5x+8 = -5$ $(5x+8 = 0x-5)$

Remarque

Une équation du premier degré à une inconnue peut avoir une, aucune ou une infinité de solutions.

--- Equations équivalentes (p. 76)

Règles d'équivalence

Pour obtenir une équation équivalente à une équation donnée, on peut:

Règle 1 Développer, réduire ou factoriser chacun des membres de cette équation.

Exemple Si
$$3(x-5) = 12x + 9 - 2x$$
, alors $3x - 15 = 10x + 9$.

Règle 2 Ajouter ou soustraire un même nombre, un même monôme ou un même polynôme aux deux membres de cette équation.

Exemple Si
$$2x - 11 = 8$$
, alors $2x - 11 + 11 = 8 + 11$ donc $2x = 19$.

Règle 3 Multiplier ou diviser par un même nombre non nul les deux membres de cette équation.

Exemple Si
$$3x = 21$$
, alors $\frac{3x}{3} = \frac{21}{3}$ donc $x = 7$.

▲ Si l'on divise ou multiplie par l'inconnue les deux membres d'une équation, on obtient une équation non équivalente à la première.

Exemple

L'équation $x^2 = x$ a deux solutions: 0 et 1.

Si l'on divise les deux membres par x, on obtient l'équation x = 1 qui n'a qu'une solution: 1.

Développer et réduire une expression littérale (p. 73), Factorisation d'une expression littérale (p. 74), Equations équivalentes (p. 76)

Résoudre une équation du premier degré à une inconnue

Méthode

Exemple Résoudre l'équation
$$9(x-1)-4x=9-x$$
.

ÉTAPE 1	
Développer et réduire chacun de ses membres	9(x-1)-4x = 9-x
(règle d'équivalence 1).	9x - 9 - 4x = 9 - x
	5x - 9 = 9 - x
ÉTAPE 2	
Appliquer la règle d'équivalence 2 pour obtenir une	5x - 9 = 9 - x + x
équation dans laquelle le terme avec l'inconnue est	6x - 9 = 9 + 9
dans l'un des membres et le terme ne contenant pas	6x = 18
l'inconnue dans l'autre.	0X = 10
ÉTAPE 3	
Diviser chaque membre par le coefficient de l'inconnue	6x = 18 : 6
(s'il n'est pas égal à 1 ou 0) pour trouver la solution	x = 3
(règle d'équivalence 3).	X = 0
ÉTAPE 4	
	C (2)
Ecrire l'ensemble de solutions.	S = {3}

Remarque

L'ensemble de solutions est correct si, en remplaçant l'inconnue par le ou les nombres trouvés, l'équation initiale est vérifiée.

3 est bien solution de l'équation 9(x-1)-4x = 9-x, car:

$$9(3-1)-4\cdot 3 = 9-3 6 = 6$$

→ Développer et réduire une expression littérale (p. 73), Règles d'équivalence (p. 77)

Equation du premier degré à deux inconnues

Une équation du premier degré à deux inconnues x et y est une équation équivalente à une équation de la forme:

$$ax + by = c$$
 (a, b, $c \in \mathbb{R}$; $a \ne 0$ et $b \ne 0$).

Une solution d'une équation à deux inconnues x et y est un couple de nombres (x ; y) qui vérifient cette équation.

Exemple

Le couple (1 ; 2) est une solution de l'équation à deux inconnues 2x + 3y = 8, car: $2 \cdot 1 + 3 \cdot 2 = 8$.

Dans cette équation, il y a une infinité d'autres couples solution. Par exemple (4;0); $(2;\frac{4}{3})$; ...

FA

Système de deux équations du premier degré à deux inconnues

Définitions

 Deux équations du premier degré à deux inconnues considérées simultanément forment un système d'équations.

Un **système d'équations** du premier degré à deux inconnues x et y est équivalent à un système de la forme:

$$\begin{bmatrix} ax + by = c & (a, b, c \in \mathbb{R}) \\ a'x + b'y = c' & (a, b, c \in \mathbb{R}) \end{bmatrix}$$

 Résoudre ce système, c'est trouver l'ensemble des couples de nombres qui vérifient simultanément les deux équations.

Exemple

$$\begin{bmatrix} 3x - y &= -10,5 \\ x + 4y &= 16 \end{bmatrix}$$

est un système du premier degré de deux équations à deux inconnues dont l'ensemble de solutions est $S = \{(-2, 4,5)\}$

En effet:
$$3 \cdot (-2) - 4.5 = -10.5$$

 $(-2) + 4 \cdot 4.5 = 16$

Remarques

- La résolution algébrique d'un système de deux équations du premier degré à deux inconnues consiste à revenir à une équation à une inconnue.
- Un système de deux équations du premier degré à deux inconnues peut avoir une, aucune ou une infinité de solutions.

Résoudre un système de deux équations du premier degré à deux inconnues

Méthode 1 Par substitution.

Exemple Résoudre le système suivant:

$$\begin{bmatrix} 4x + y = 5 \\ 3x + 6y = -12 \end{bmatrix}$$

ÉTAPE 1	
A l'aide des règles d'équivalence,	$\begin{bmatrix} -4x + y = 5 & \oplus \\ 3x + 6y = -12 & \oplus \end{bmatrix}$
exprimer une inconnue en fonction de l'autre à partir d'une des équations.	-3x + 6y = -12 ②
·	Dans ce système, le plus simple est d'exprimer y en fonction de x à l'aide de la première équation.
	4x + y = 5
	y = 5 - 4x
ÉTAPE 2	
Remplacer, dans la deuxième équation, l'inconnue isolée par l'expression obtenue.	3x + 6(5 - 4x) = -12
	3x + 30 - 24x = -12
	30 - 21x = -12
ÉTAPE 3	
Résoudre l'équation à une inconnue	-21x = -42 : (-21)
ainsi obtenue à l'aide des règles	x = 2
d'équivalence.	
ÉTAPE 4	
Calculer la valeur numérique de la	y = 5 - 4x
deuxième inconnue en remplaçant la lettre par la valeur trouvée dans la	$y = 5 - 4 \cdot 2$
première équation.	y = -3
ÉTAPE 5	
Ecrire l'ensemble de solutions.	$S = \{(2:-3)\}$
Lonio i criserrible de solutions.	0 - 1 (2, 3/)

Remarque

L'ensemble de solutions est correct si, en remplaçant les inconnues par leur valeur respective, les deux équations initiales sont vérifiées.

Le couple (2; -3) est solution du système, car:

$$\begin{bmatrix} 4 \cdot 2 + (-3) & = 5 \\ 3 \cdot 2 + 6 \cdot (-3) & = -12 \end{bmatrix}$$

Méthode 2

Par combinaison linéaire.

Exemple Résoudre le système suivant:

 $\begin{bmatrix} 2x + 3y = 27 \\ 5x = 2y + 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 2x + 3y = 27 \\ 5x - 2y = 1 \end{bmatrix}$

$$\int_{-5x}^{2x} + 3y = 27$$

|--|

A l'aide des règles d'équivalence, transformer les deux équations pour les ramener à un système de la forme:

$$\begin{bmatrix} ax + by = c \\ a'x + b'y = c' \end{bmatrix}$$

Multiplier ou diviser les deux membres de la première équation par un même nombre et ceux de la deuxième équation par un même nombre de telle façon que les coefficients d'une des inconnus soient opposés.

Additionner les deux équations membre à membre,

$$\begin{bmatrix}
2x + 3y = 27 \\
5x - 2y = 1
\end{bmatrix}$$

$$+ \begin{bmatrix}
4x + 6y = 54 \\
15x - 6y = 3
\end{bmatrix}$$

pour que l'une des inconnues disparaisse.

$$\frac{-15x - 6y = 3}{19x + 0y = 57}$$

ÉTAPE 3

Résoudre une équation à une inconnue ainsi obtenue à l'aide des règles d'équivalence.

$$19x = 57$$
$$x = 3$$

| .2

ÉTAPE 4

ÉTAPE 5

Remplacer la lettre par sa valeur dans une des équations du système et déterminer la deuxième inconnue.

$$2 \cdot 3 + 3y = 27$$
$$3y = 21$$

$$y = 7$$

$$S = \{(3;7)\}$$

Remarque

L'ensemble de solutions est correct si, en remplaçant les inconnues par leur valeur respective, les deux équations initiales sont vérifiées.

Le couple (3; 7) est solution du système, car:

$$\begin{bmatrix} 2 \cdot 3 + 3 \cdot 7 &= 27 \\ 5 \cdot 3 &= 2 \cdot 7 + 1 \end{bmatrix}$$

--- Règles d'équivalence (p. 77)

Noter l'ensemble de solutions.

Equation du deuxième degré à une inconnue

Définition

Une **équation du deuxième degré** d'inconnue x est une équation qui est équivalente à une équation de la forme $ax^2 + bx + c = 0$ (a, b, $c \in \mathbb{R}$; $a \neq 0$).

$$7x^2 + x - 10 = 0$$

$$-3x^2 + 84 = 0$$

$$x^2 + 8x = -5$$

--- Equations équivalentes (p. 76)

Résolution d'une équation du deuxième degré à une inconnue

Propriété 1 Pour qu'un produit de facteur soit nul, il faut et il suffit qu'un des facteurs soit nul. Quels que soient les nombres n et m, si $n \cdot m = 0$ signifie que n = 0 ou m = 0 $(n, m \in \mathbb{R})$.

Exemple

Si (2x-3)(x+2) = 0, alors 2x-3 = 0 ou x+2 = 0.

Définition Le discriminant de l'équation $ax^2 + bx + c = 0$ est le nombre Δ défini par: $\Delta = b^2 - 4ac$ $(a, b, c \in \mathbb{R}; a \neq 0)$.

Propriétés 2 Soit l'équation $ax^2 + bx + c = 0$ $(a, b, c \in \mathbb{R}; a \neq 0)$. Si $\Delta > 0$, alors l'équation a deux solutions:

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
; $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$ (formule de Viète)

■ Si $\Delta = 0$, alors l'équation a une seule solution:

$$x_1 = x_2 = \left\{ \frac{-b}{2a} \right\}$$
 (formule de Viète)

Si Δ < 0, alors l'équation n'a pas de solution:</p>

$$S = \emptyset$$

Exemples

o
$$6x^2 + x - 2 = 0$$

 $a = 6$; $b = 1$; $c = -2$
 $\Delta = b^2 - 4ac = 1^2 - 4 \cdot 6 \cdot (-2) = 49$
 $\Delta > 0$, cette équation possède deux solutions.
Comme $\sqrt{49} = 7$, alors

$$S = \left\{ \frac{-1+7}{12} ; \frac{-1-7}{12} \right\}$$
$$S = \left\{ \frac{1}{12} : \frac{-2}{12} \right\}$$

$$S = \left\{ \frac{1}{2} ; -\frac{2}{3} \right\}$$

 Δ = 0, cette équation possède une seule solution.

$$x = \frac{-(-4)}{2 \cdot \frac{1}{2}} = \frac{4}{1} = 4$$

$$S = \{4\}$$

o
$$x^2 + 2x + 2 = 0$$

 $a = 1$; $b = 2$; $c = 2$
 $\Delta = b^2 - 4ac = 2^2 - 4 \cdot 1 \cdot 2 = 4 - 8 = -4$
 $\Delta < 0$, cette équation n'a pas de solution.
 $S = \emptyset$

Remarque Résolution de l'équation $x^2 = n$ ($n \in \mathbb{R}$)

- Si n > 0 l'équation possède deux solutions opposées \sqrt{n} et $-\sqrt{n}$.
- Si n = 0 l'équation a une seule solution $\sqrt{0} = 0$.
- Si n < 0 l'équation n'a pas de solution dans \mathbb{R} .

Résoudre une équation du deuxième degré à une inconnue

Méthode 1

82

Par factorisation.

Exemple Résoudre l'équation $x^2 = -5x$.

S'assurer que l'équation est écrite sous la forme $ax^2 + bx + c = 0$. Si ce n'est pas le cas, effectuer la ou les transformations nécessaires.	$x^2 = -5x$ $x^2 + 5x = 0$
Factoriser le membre contenant l'inconnue à l'aide des méthodes connues.	Par mise en évidence, on obtient: x(x + 5) = 0
Appliquer la propriété: si $a \cdot b = 0$, alors $a = 0$ ou $b = 0$.	Pour que ce produit soit égal à 0, il faut que $x = 0$ ou que $x = -5$.
Ecrire l'ensemble de solutions.	S = {-5;0}

Remarque

Pour vérifier que l'ensemble de solutions est correct, on peut remplacer l'inconnue par le ou les nombres trouvés.

 $\{-5;0\}$ est bien l'ensemble de solutions de l'équation $x^2=-5x$, car:

$$(-5)^2 = (-5) \cdot (-5)$$
 et $0^2 = (-5) \cdot 0$.

Factorisation d'une expression littérale (p. 74)

Méthode 2

A l'aide du discriminant.

Exemple Résoudre l'équation $x^2 + 2x - 3 = 0$.

ÉTAPE 1	
S'assurer que l'équation est écrite sous la forme $ax^2 + bx + c = 0$. Si ce n'est pas le cas, effectuer la ou les transformations nécessaires.	C'est bien le cas donc on peut passer à l'étape 2.
Calculer le discriminant et regarder s'il est plus grand, plus petit ou égal à 0. $\Delta = b^2 - 4ac$	$\Delta = 2^2 - 4 \cdot 1 \cdot (-3) = 16$ Le discriminant est plus grand que 0, donc l'équation a deux solutions.
Calculer les deux solutions avec la formule de Viète. $x_1 = \frac{-b + \sqrt{\Delta}}{2a} \; ; \; x_2 = \frac{-b - \sqrt{\Delta}}{2a}$	$x_1 = \frac{-2 + \sqrt{16}}{2 \cdot 1} = 1$ $x_2 = \frac{-2 - \sqrt{16}}{2 \cdot 1} = -3$
Ecrire l'ensemble de solutions.	S = {-3;1}

Remarque

Pour vérifier que l'ensemble de solutions est correct, on peut remplacer l'inconnue par le ou les nombres trouvés.

 $\{-3; 1\}$ est bien l'ensemble de solutions de l'équation $x^2 + 2x - 3 = 0$, car:

$$(-3)^2 + 2 \cdot (-3) - 3 = 0$$
 et $1^2 + 2 \cdot 1 - 3 = 0$.

Calcul de la mesure d'une grandeur à partir d'une formule

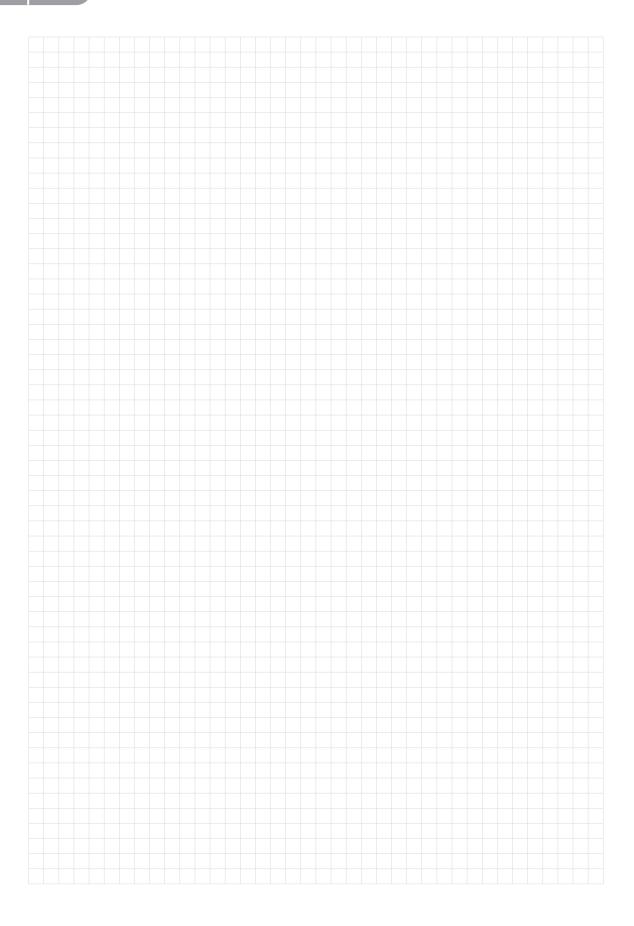
En mathématiques, on utilise de très nombreuses formules qui relient différentes grandeurs. Dans ces formules, si l'on ne connaît pas la valeur d'une seule des lettres, on peut la calculer.

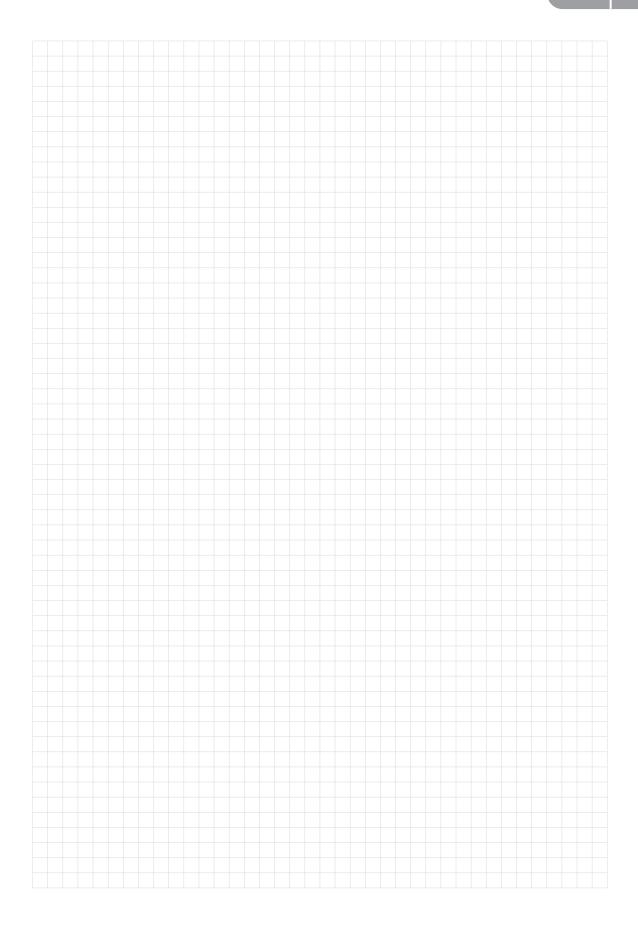
Exemple

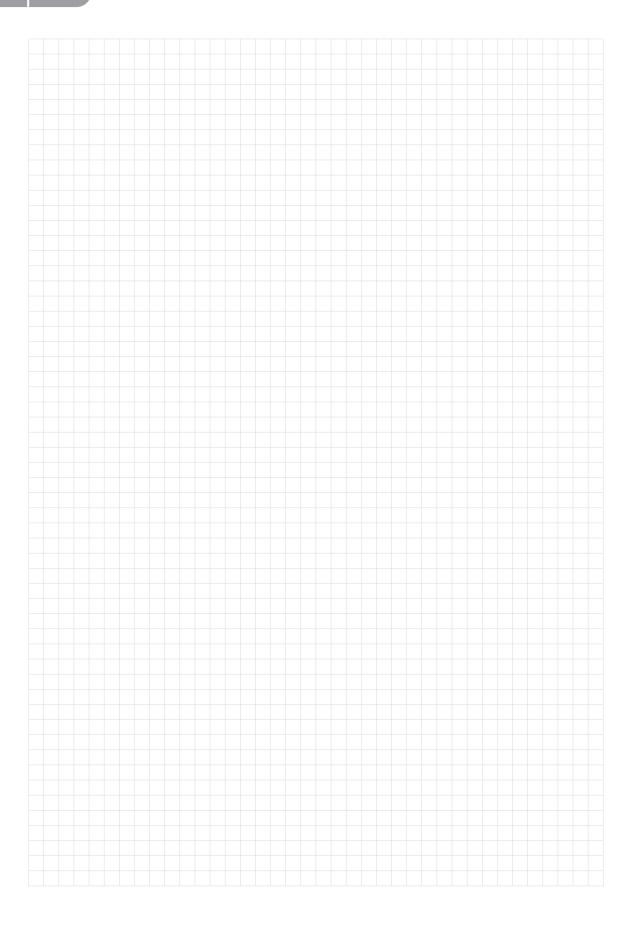
Dans la formule $A = L \cdot I$ qui donne l'aire d'un rectangle, si l'on connaît A et L, on peut calculer I.

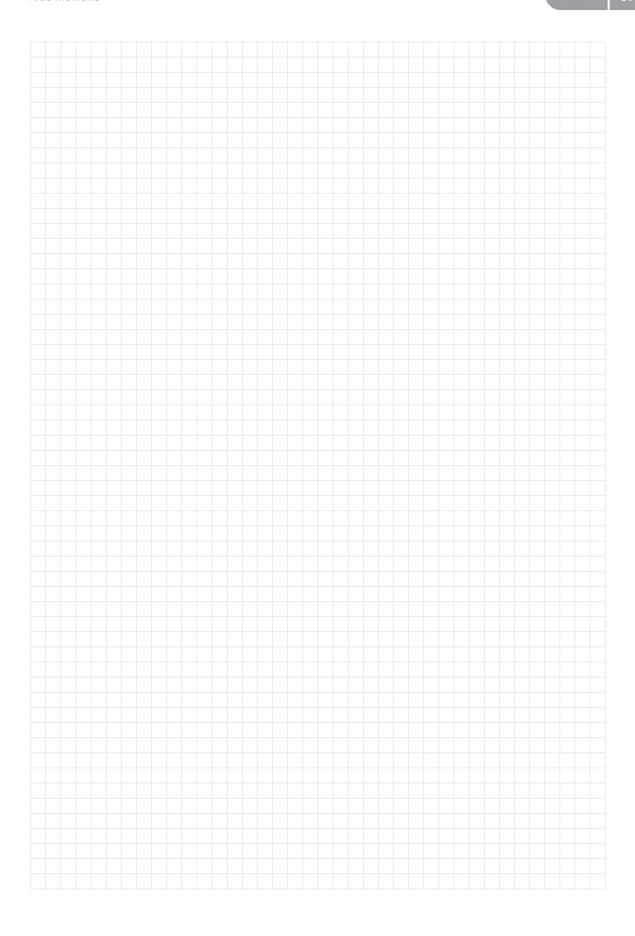
Utiliser une formule pour calculer une mesure de grandeur

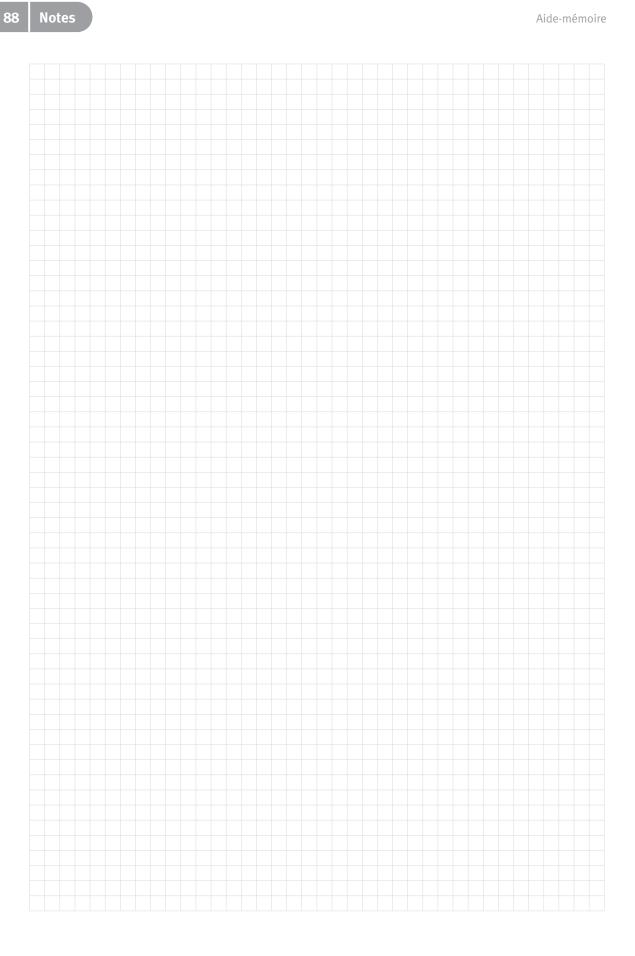
Méthode


Exemple 1 Calculer la petite base b d'un terrain qui a la forme d'un trapèze, sachant que sa grande base B = 150 m, sa hauteur h = 200 m et son aire A = 2,7 ha.


Ecrire la formule liant les grandeurs en jeu dans la question.	$A = \frac{B+b}{2} \cdot h$
Harmoniser les unités.	$2,7 ha = 27000 m^2$
Remplacer dans cette formule les lettres connues par leurs valeurs.	$27000 = \frac{150 + b}{2} \cdot 200 \qquad \qquad \cdot 2$
Calculer la valeur cherchée en appliquant les règles d'équivalence pour résoudre l'équation.	$54000 = (150 + b) \cdot 200$ $54000 = 30000 + 200b$ $24000 = 200b$ $b = \frac{24000}{200} = 120$ -30000 $:200$
Conclure.	Donc la petite base b est égale à 120 m.


Méthode


Exemple 2 Un piéton se déplace à la vitesse moyenne de 5 km/h. Quel temps va-t-il mettre pour parcourir 7000 m?


ÉTAPE 1	
Ecrire la formule liant les grandeurs en jeu dans la question.	$v = \frac{d}{t}$
Harmoniser les unités	7000 m = 7 km
Transfer les antes.	La vitesse est donnée en km/h et la distance en km. Le temps trouvé sera donc en h.
ÉTAPE 3	
Remplacer dans cette formule les lettres connues par leurs valeurs.	$5 = \frac{7}{t} $
Calculer la valeur cherchée en appliquant les règles d'équivalence pour résoudre l'équation.	$5 \cdot t = 7$ $t = 1,4$
Conclure.	Le piéton va mettre 1,4 h, ce qui correspond à 1 h 24 min.

Espace

- Figures géométriques planes
- Transformations géométriques
- Géométrie dans l'espace

Figures géométriques planes

Droite

Définition

La droite AB est constituée d'une infinité de points alignés avec A et B.

Notation

La droite qui passe par les points A et B est appelée droite AB.

On peut aussi la désigner par une lettre minuscule.

Exemple

La droite AB ou la droite d.

Remarque

Par deux points distincts, il ne passe qu'une seule droite.

Une droite n'a ni début ni fin, sa représentation peut être prolongée à l'infini.

Points alignés

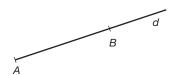
Définition

Trois points (ou plus) sont alignés s'ils appartiennent à une même droite.

Exemples

 Les points A, B et C sont alignés, car ils appartiennent à une même droite. Les points D, E et F ne sont pas alignés, car ils ne se trouvent pas tous sur une même droite.

Demi-droite


Définition

Une demi-droite est une portion de droite limitée par un point. Ce point est appelé l'origine de la demi-droite.

Exemple

On a représenté ci-contre la demi-droite AB, d'origine A et passant par B.

On peut aussi l'appeler demi-droite Ad.

Segment

Définition

Un segment est une portion de droite limitée par deux points. Ces deux points sont appelés les extrémités du segment.

Exemple

On a représenté ci-contre le segment AB, dont les extrémités sont les points A et B.

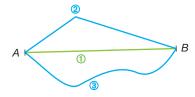
Remarque

Une droite, une demi-droite et un segment sont constitués d'une infinité de points. Seul le segment a une longueur déterminée et est donc mesurable.

ES

Espace

Distance entre deux points


Définition

La distance entre deux points est la longueur du plus court chemin joignant ces deux points. C'est par conséquent la longueur du segment ayant comme extrémités ces deux points.

Exemple

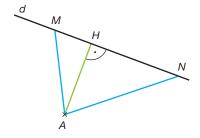
Le plus court chemin joignant les deux points A et B est le segment AB (le chemin ① est plus court que les chemin ② et ③).

On note AB = 4 cm

Distance d'un point à une droite

Définition

La distance d'un point à une droite est la longueur du plus court chemin de ce point à la droite.


Propriété

La distance du point A à la droite d est la longueur du segment AH perpendiculaire à la droite d.

Exemple

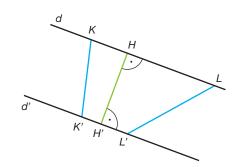
La distance du point A à la droite d est de 2 cm.

AH < AMAH < AN

Distance entre deux droites parallèles

Définition

La distance entre deux droites parallèles est la longueur du plus court chemin joignant ces deux droites.


Propriété

La distance entre les droites parallèles d et d' est la longueur du segment HH' perpendiculaires aux droites d et d'.

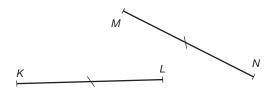
Exemple

La distance entre les droites parallèles d et d' est 2 cm.

HH' < KK' HH' < LL'

Définition

Deux segments isométriques sont des segments qui ont la même longueur.


Notation

Pour indiquer que des segments sont isométriques, on place sur chacun d'eux un même signe, par exemple un trait, un double trait, etc.

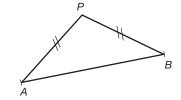
Exemple

Les segments MN et KL sont isométriques.

MN = KL



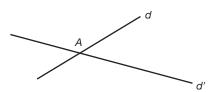
Milieu d'un segment


Définition

Le milieu du segment AB est le point M de ce segment, tel que MA = MB.

Exemple

^

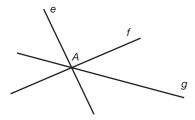

Droites sécantes

Définition

Deux droites sécantes sont deux droites qui ont un seul point commun appelé point d'intersection des deux droites.

Exemple

Les droites d et d' sont sécantes. A est leur point d'intersection.


Remarque

Lorsque trois droites ou plus ont un point commun on dit qu'elles sont concourantes.

Exemple

Les droites e, f et g sont concourantes en A.

Sécante: du latin secare, couper.

ES

Espace

Droites perpendiculaires

Définition Deux droites perpendiculaires sont deux droites qui se coupent à angles droits.

Exemple

Les droites d et d' sont perpendiculaires. On note: $d \perp d'$.

Remarque

Pour vérifier que deux droites sont perpendiculaires, il suffit de vérifier qu'elles forment un angle droit.

Tracer la droite perpendiculaire à une droite donnée passant par un point donné

Méthode 1 En utilisant une équerre et une règle. Exemple Tracer la droite perpendiculaire à d passant par A.

d

ÉTAPE 1	
Placer la règle sur la droite <i>d</i> , puis faire glisser l'équerre sur cette règle.	A ×
Arrivé au point <i>A</i> , tracer la perpendiculaire à <i>d</i> passant par <i>A</i> .	A J
ÉTAPE 3	
Prolonger la droite obtenue.	A LE

Méthode 2

En utilisant un compas et une règle.

Tracer un arc de cercle de centre A qui coupe la droite en deux points.

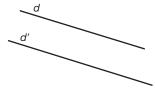
A ×

[ETAPE 2]

Tracer deux arcs de cercle de même rayon et dont les centres sont les deux points ci-dessus. Ces deux arcs se coupent en un point.

La droite passant par A et ce point est la droite perpendiculaire à d passant par A.

--- Médiatrice d'un segment (p. 96)


Droites parallèles

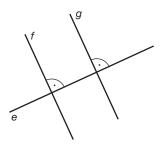
Définition

Deux droites parallèles sont deux droites qui n'ont aucun point commun ou tous les points en commun (droites confondues).

Exemple

Les droites d et d' sont parallèles. On note: d // d'.

ES

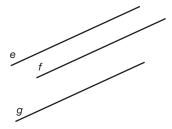

Propriétés des droites parallèles et perpendiculaires

Propriété 1

Si deux droites sont perpendiculaires à une troisième, alors elles sont parallèles.

Exemple

Les droites f et g sont toutes les deux perpendiculaires à la droite e, donc f et g sont parallèles.

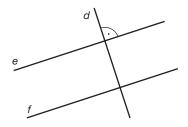


Propriété 2

Si deux droites sont parallèles à une troisième, alors elles sont parallèles entre elles.

Exemple

La droite e est parallèle à f, la droite g est parallèle à f, donc e et g sont parallèles.


Espace

Propriété 3

Si deux droites sont parallèles et si une troisième droite est perpendiculaire à l'une, alors elle est perpendiculaire à l'autre.

Exemple

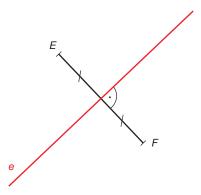
Les droites e et f sont parallèles et d est perpendiculaire à e. On peut donc affirmer que d est perpendiculaire à f.

Tracer la droite parallèle à une droite donnée passant par un point donné

ét		

A l'aide d'une équerre et d'une règle.

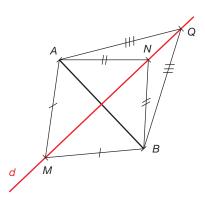
Exemple Tracer la droite parallèle à d passant par A.


ÉTAPE 1	
Placer un des côtés de l'angle droit de l'équerre sur la droite et la règle contre l'autre côté de l'angle droit.	A ×
ETAPE 2 Faire glisser l'équerre le long de la règle	
jusqu'au point A.	A ×
Tracer la droite parallèle à <i>d</i> passant par <i>A</i> .	
	A DEFENDENCE OF THE PROPERTY O

Définition

La médiatrice d'un segment est la droite perpendiculaire à ce segment et qui le coupe en son milieu.

Exemple


La droite e est la médiatrice du segment EF.

Propriétés

- La médiatrice d'un segment est l'ensemble des points à égale distance des extrémités de ce segment.
- La médiatrice d'un segment est un axe de symétrie de ce segment.

M, N et Q sont des points à égale distance de A et de B (MA = MB; NA = NB; QA = QB). La droite d est la médiatrice du segment AB et donc un axe de symétrie de ce segment.

Médiatrice : du latin media, qui est au milieu.

Symétrie axiale (p. 130), Axe de symétrie (p. 132)

Espace

Construire la médiatrice d'un segment avec une règle non graduée et un compas

Méthode

Exemple Tracer la médiatrice d du segment AB.

Tracer un arc de cercle dont le centre est une extrémité du segment et dont le rayon est plus grand que la moitié du segment.

ETAPE 2

Tracer un arc de cercle de même rayon dont le centre est l'autre extrémité du segment.

B

A

M

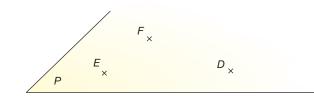
ETAPE 3

Tracer la droite qui passe par les deux points d'intersection obtenus.

C'est la médiatrice du segment.

Remarque

Cette méthode permet de déterminer le milieu d'un segment ou de construire un angle droit sans règle graduée.

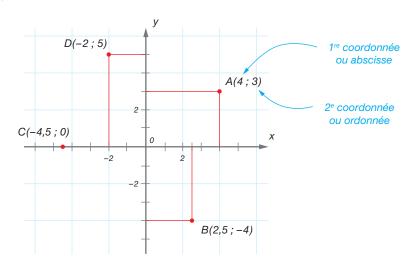


Définition

Un plan est déterminé par trois points de l'espace non alignés. Il peut être visualisé comme une feuille d'épaisseur nulle qui s'étend à l'infini.

Exemple

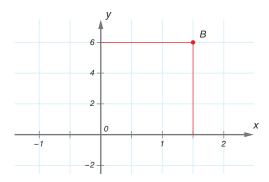
Les trois points D, E et F appartiennent au plan P.


Repérage d'un point dans le plan

Définitions

Pour pouvoir repérer un point dans le plan, on peut utiliser deux axes gradués de même origine.

- Ces axes sont généralement perpendiculaires. Ils forment ce qu'on appelle un repère.
- Le point d'intersection des axes est appelé origine du repère.
- Un point est alors repéré par un couple (x ; y) de nombres réels, appelé coordonnées du point.
- Le premier nombre du couple est appelé abscisse.
 Il situe le point par rapport à l'axe horizontal (axe des x).
- Le deuxième nombre du couple est appelé **ordonnée**. Il situe le point par rapport à l'axe vertical **(axe des y)**.


Exemple

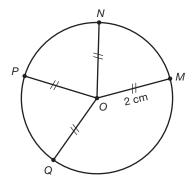
Les graduations ne correspondent pas toujours à une unité. Les unités ne sont pas nécessairement de même longueur sur chacun des deux axes.

Exemple

Dans le repère ci-dessous, B a pour coordonnées (1,5 ; 6).

Cercle et disque

Définitions


Aide-mémoire

- Un cercle est l'ensemble des points du plan situés à égale distance d'un point, appelé centre.
- Cette distance est appelée le rayon du cercle.

Exemple

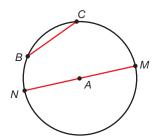
On a tracé ci-contre le cercle de centre O et de rayon 2 cm.

$$OM = ON = OP = OQ = 2 cm$$

Remarque

Le rayon désigne aussi le segment qui joint le centre du cercle à un point du cercle.

Exemple


Le segment OM est un rayon du cercle ci-dessus.

Définitions

- Une corde d'un cercle est un segment dont les deux extrémités sont des points du cercle.
- Le diamètre d'un cercle est une corde qui passe par le centre du cercle. C'est la plus longue corde du cercle. Sa longueur est égale au double du rayon.

Exemple

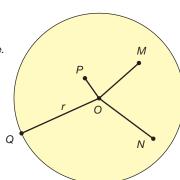
On a tracé ci-contre un cercle de centre A. Le segment NM est un diamètre. Le segment BC est une corde.

Définition

Un disque est l'ensemble des points situés à l'intérieur et sur le cercle.

Exemple

La partie du plan coloré en jaune est le disque de centre O et de rayon r.


Les points M, N, P et Q sont des points du disque.

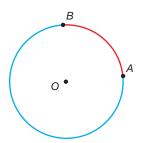
 $OM \leq r$

 $ON \leq r$

OP ≤ *r*

0Q ≤ r

Définition

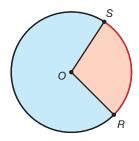

Un arc de cercle est une partie d'un cercle comprise entre deux points. Deux points d'un cercle déterminent deux arcs de cercle.

Notation

Soit A et B deux points d'un cercle. L'arc de cercle est noté \widehat{AB} .

Exemple

Les points A et B sur le cercle déterminent deux arcs de cercle \widehat{AB} : l'arc en bleu et l'arc en rouge.

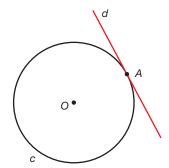

Secteur circulaire

Définition

Un secteur circulaire est une partie d'un disque limitée par deux rayons. Deux rayons d'un disque déterminent deux secteurs circulaires.

Exemple

Les rayons OR et OS déterminent deux secteurs circulaires SOR: le secteur circulaire bleu et le secteur circulaire rouge.


Tangente à un cercle

Définition

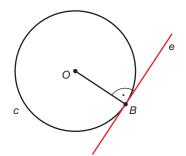
Une tangente à un cercle est une droite qui a un seul point commun avec ce cercle.

Exemple

La droite d est la tangente en A au cercle c. On dit aussi que le cercle c est tangent à la droite d.

ES

ES


Propriété

La tangente en un point B d'un cercle de centre O est la droite perpendiculaire à la droite OB qui passe par le point B.

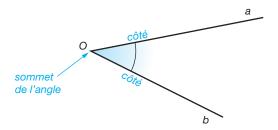
Cette propriété permet de tracer facilement une tangente à un cercle.

Exemple

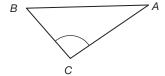
La droite e est la tangente en B au cercle c.

Tangente: du latin tangere, toucher.

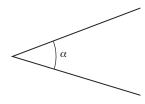
--- Droites perpendiculaires (p. 93)


Angle

Définitions


- Un angle est une portion du plan limitée par deux demi-droites de même origine.
- L'origine est appelée **sommet** de l'angle et les demi-droites sont les **côtés** de l'angle.

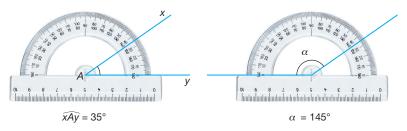
Notations


L'angle ci-dessous est noté aOb ou bOa.

Dans ce triangle, l'angle de sommet C est noté BCA ou ACB.

• Une lettre grecque peut aussi désigner un angle.

Remarque


L'unité usuelle de mesure des angles est le **degré**, noté par le symbole °.

Mesurer un angle à l'aide d'un rapporteur

Exemple Mesurer un angle \widehat{AOB} à l'aide d'un rapporteur.

	0
	H _B
ÉTAPE 1	D
Déterminer à vue d'œil si l'angle à mesurer est aigu ou obtus.	A
ÉTAPE 2	$\widehat{AOB} < 90^{\circ} \rightarrow \text{angle aigu.}$
Faire coïncider le centre du rapporteur avec le sommet de l'angle.	A A B B B
ÉTAPE 3	Б
Faire coïncider un des côtés de l'angle avec le 0° d'une des graduations.	A A B
Lire la mesure de l'angle sur la	L'angle \widehat{AOB} mesure 35°.
graduation correspondante.	AOB est bien un angle aigu.
Vérifier si cette mesure est cohérente avec la détermination à vue d'œil.	

⚠ If y a souvent deux graduations sur un rapporteur. Il est donc important d'identifier d'abord si l'angle à mesurer est aigu ou obtus afin d'utiliser la bonne graduation.

--- Classement des angles (p. 103)

Classement des angles

Définitions

■ Un angle nul est un angle dont la mesure est 0°.

Exemple

 $\alpha = 0^{\circ}$

α ———

• Un angle aigu est un angle dont la mesure est comprise entre 0° et 90°.

Exemple

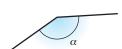
 $\alpha = 70^{\circ}$

 $0^{\circ} < \alpha < 90^{\circ}$

• Un angle droit est un angle dont la mesure est 90°.

Exemple

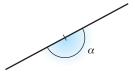
 $\alpha = 90^{\circ}$



■ Un angle obtus est un angle dont la mesure est comprise entre 90° et 180°.

Exemple

 $\alpha = 148^{\circ}$


 $90^{\circ} < \alpha < 180^{\circ}$

Un angle plat est un angle dont la mesure est 180°.

Exemple

 $\alpha = 180^{\circ}$

■ Un angle rentrant est un angle dont la mesure est comprise entre 180° et 360°.

Exemple

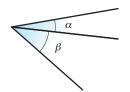
 $\alpha = 240^{\circ}$

 $180^{\circ} < \alpha < 360^{\circ}$

Un angle plein est un angle dont la mesure est 360°.

Exemple

 $\alpha = 360^{\circ}$


Angles adjacents

Définition

Deux angles adjacents sont deux angles qui:

- ont le même sommet;
- ont un côté commun;
- sont situés de part et d'autre de ce côté commun.

Les angles α et β sont adjacents.

Adjacent: du latin adjacere, être situé auprès de.

Angles complémentaires

Définition

Deux angles complémentaires sont deux angles dont la somme de leurs mesures est égale à 90°.

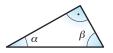
Exemple

 $\alpha = 52^{\circ}$

 $\beta = 38^{\circ}$

 $\alpha + \beta = 90^{\circ}$

Les angles α et β sont complémentaires.


Remarque

Deux angles complémentaires ne sont pas forcément adjacents.

Les deux angles aigus d'un triangle rectangle sont complémentaires.

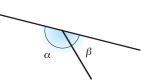
$$\alpha + \beta = 90^{\circ}$$

--- Angles adjacents (p. 104)

Angles supplémentaires

Définition

Deux angles supplémentaires sont deux angles dont la somme de leurs mesures est égale à 180°.


Exemple

 $\alpha = 135^{\circ}$

 $\beta = 45^{\circ}$

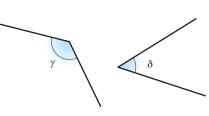
 $\alpha + \beta = 180^{\circ}$

Les angles α et β sont supplémentaires.

Remarque

Deux angles supplémentaires ne sont pas forcément adjacents.

Exemple


 $\delta = 50^{\circ}$

 $\gamma = 130^{\circ}$

 δ + γ = 180°

Les angles δ et γ sont supplémentaires mais pas adjacents.

--- Angles adjacents (p. 104)

Espace

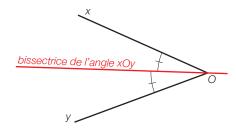
Angles isométriques

Définition

Deux angles isométriques sont deux angles qui ont la même mesure.

Exemple

Les angles α et β sont isométriques, ils mesurent tous les deux 74°.

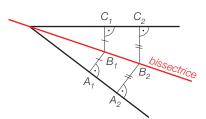


Bissectrice d'un angle

Définition

La bissectrice d'un angle est la droite qui le partage en deux angles isométriques.

Exemple


Propriétés

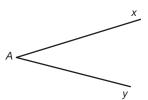
La bissectrice d'un angle est aussi:

- l'ensemble des points situés à égale distance des côtés de l'angle;
- l'axe de symétrie de cet angle.

Exemple

$$B_1 A_1 = B_1 C_1$$

 $B_2 A_2 = B_2 C_2$



Bissectrice: du latin bis, deux fois et secare, couper.

Construire la bissectrice d'un angle avec une règle et un compas

Méthode

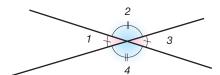
Exemple Construire la bissectrice de l'angle xAy à l'aide d'une règle et d'un compas.

ÉTAPE 1 Tracer un arc de cercle de centre A; il coupe les côtés de l'angle \widehat{xAy} aux points M et N. ÉTAPE 2 Tracer deux arcs de cercle de même rayon, l'un de centre M et l'autre de centre N. Ces deux arcs se coupent en B. ÉTAPE 3 Tracer la droite qui passe par les points A et B. Cette droite est la bissectrice de l'angle \widehat{xAy} .

Angles opposés par le sommet

Définition

Deux angles sont opposés par le sommet:


- s'ils ont le même sommet;
- si les côtés de l'un sont les prolongements des côtés de l'autre.

Propriété

Les angles opposés par le sommet sont isométriques.

Exemple

- O Les angles 1 et 3 sont opposés par le sommet, ils sont isométriques.
- O Les angles 2 et 4 sont opposés par le sommet, ils sont isométriques.

Remarque

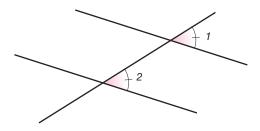
Deux droites sécantes définissent deux paires d'angles opposés par le sommet.

Droites sécantes (p. 92), Angles isométriques (p. 105)

Angles correspondants

Définition

Lorsque deux droites parallèles sont coupées par une sécante, deux angles sont correspondants:


- s'ils sont situés du même « côté » de la droite sécante;
- si l'un est à l'«intérieur» et l'autre à l'«extérieur» des droites parallèles et s'ils ne sont pas adjacents.

Propriété

Les angles correspondants sont isométriques.

Exemple

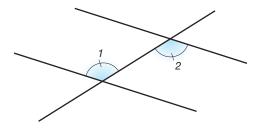
Les angles 1 et 2 sont correspondants, ils sont isométriques.

Droites sécantes (p. 92), Droites parallèles (p. 94), Angles adjacents (p. 104), Angles isométriques (p. 105)

Angles alternes-internes

Définition

Lorsque deux droites parallèles sont coupées par une sécante, deux angles sont alternes-internes:


- s'ils sont non adjacents;
- s'ils sont situés de chaque «côté» de la droite sécante et à l'«intérieur» des droites parallèles.

Propriété

Les angles alternes-internes sont isométriques.

Exemple

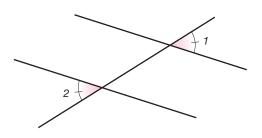
Les angles 1 et 2 sont alternes-internes, ils sont isométriques.

Droites sécantes (p. 92), Droites parallèles (p. 94), Angles adjacents (p. 104), Angles isométriques (p. 105)

Angles alternes-externes

Définition

Lorsque deux droites parallèles sont coupées par une sécante, deux angles sont alternes-externes:


- s'ils sont non adjacents;
- s'ils sont situés de chaque «côté» de la droite sécante et à l'«extérieur» des droites parallèles.

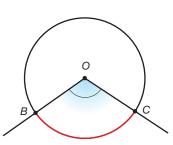
Propriété

Les angles alternes-externes sont isométriques.

Exemple

Les angles 1 et 2 sont alternes-externes, ils sont isométriques.

Angle au centre d'un cercle


ES

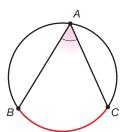
Définition

Un angle au centre d'un cercle est un angle dont le sommet est le centre du cercle. Il intercepte un arc de cercle.

Exemple

BOC est un angle au centre du cercle de centre O. Il intercepte l'arc de cercle BC.

--- Arc de cercle (p. 100)

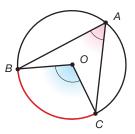

Angle inscrit dans un cercle

Définition

Un angle inscrit dans un cercle est un angle dont le sommet est sur le cercle et dont les côtés coupent le cercle. Il intercepte un arc de cercle.

Exemple

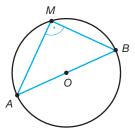
 \widehat{BAC} est un angle inscrit dans le cercle de centre O. Il intercepte l'arc de cercle \widehat{BC} .



Propriété 1 Dans un cercle, si un angle inscrit et un angle au centre interceptent le même arc, alors la mesure de l'angle au centre est le double de celle de l'angle inscrit.

Exemple

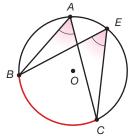
L'angle inscrit \widehat{BAC} et l'angle au centre \widehat{BOC} interceptent le même arc \widehat{BC} .


Donc $\widehat{BOC} = 2 \cdot \widehat{BAC}$.

Conséquence Si M appartient au cercle de diamètre AB, alors \widehat{AMB} est un angle droit.

Exemple

L'angle au centre ÂOB vaut 180°. Donc l'angle inscrit ÂMB vaut 90°.

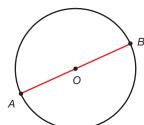


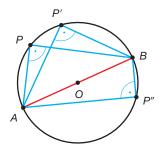
Propriété 2 Dans un cercle, si deux angles inscrits interceptent le même arc, alors ils sont isométriques.

Exemple

Les angles inscrits \widehat{BAC} et \widehat{BEC} interceptent le même arc \widehat{BC} .

Donc $\widehat{BAC} = \widehat{BEC}$.



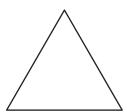

Cercle de Thalès d'un segment

Définition

Le cercle de Thalès d'un segment AB est l'ensemble des points P tel que APB est un triangle rectangle en P (ou \widehat{APB} est un angle droit). C'est le cercle de diamètre AB.

Exemple

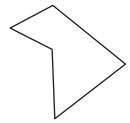
110 Espace Aide-mémoire



Définition

Une figure plane est une partie du plan limitée par une ligne fermée.

Exemples



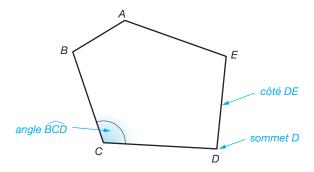

Polygone

Définition

Un polygone est une figure plane limitée uniquement par des segments.

Exemples

ES


Notation

Il y a plusieurs façons de nommer un polygone, mais il convient de respecter l'ordre dans lequel les sommets se suivent.

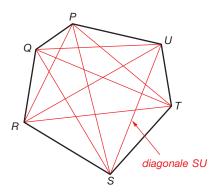
Généralement, on note les sommets dans le sens contraire des aiguilles d'une montre (sens positif) et par ordre alphabétique.

Exemple

Le polygone ci-dessous peut-être nommé ABCDE ou DEABC, etc. Par contre, on ne peut pas le nommer ADECB.

Polygones particuliers

Le nom donné aux différents polygones est en lien direct avec le nombre de côtés et d'angles qui le constituent. Un **triangle** est un polygone à trois côtés et trois angles, un **quadrilatère** un polygone à quatre côtés et quatre angles, un **hexagone** possède six côtés et six angles, etc.


Diagonale d'un polygone

Définition

Une diagonale d'un polygone est un segment qui joint deux sommets non consécutifs.

Exemple

Le polygone PQRSTU possède neuf diagonales.

Diagonale: du grec *dia*, à travers et *gônia*, angle; qui traverse d'un angle à un autre.

Polygone convexe ou non convexe

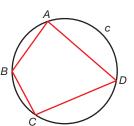
Définition

Un polygone convexe est un polygone qui contient chaque segment joignant deux de ses points.

Exemples

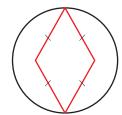
polygones convexes

polygones non convexes


Polygone inscrit dans un cercle

Définition

Un polygone inscrit dans un cercle est un polygone dont tous les sommets sont des points de ce cercle. Ce cercle est appelé cercle circonscrit.


Exemple

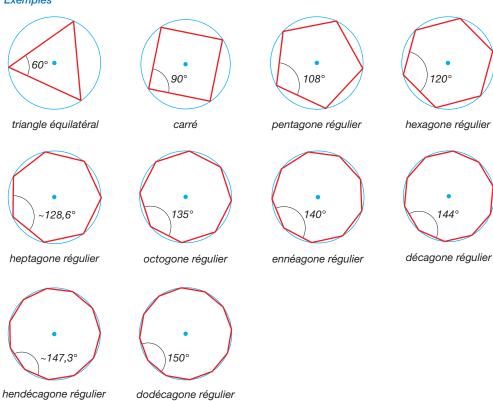
Le quadrilatère ABCD est inscrit dans le cercle c.

Remarque

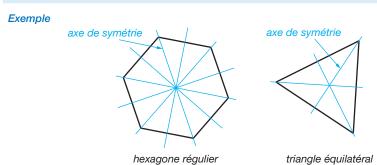
Tout polygone n'est pas inscriptible dans un cercle, par exemple les losanges (non carrés).

Un polygone régulier est un polygone dont tous les côtés et tous les angles sont isométriques.

Remarque


Si l'une des deux conditions manque, alors le polygone n'est pas régulier.

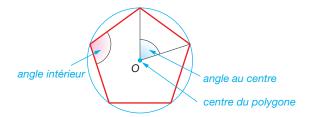
Un losange qui n'est pas carré n'est pas un polygone régulier, car il possède quatre côtés isométriques, mais il ne possède pas quatre angles isométriques.


Propriété 1

Tout polygone régulier est inscriptible dans un cercle. Le centre de ce cercle est appelé **centre du polygone**.

Exemples

Propriété 2 Un polygone régulier possède autant d'axes de symétrie que de côtés.

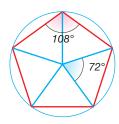

Segments isométriques (p. 92), Angles isométriques (p. 105), Axe de symétrie (p. 132)

Angle au centre et angle intérieur d'un polygone régulier

Définitions

- L'angle au centre d'un polygone régulier est l'angle dont le sommet est le centre du polygone et dont les côtés passent par deux sommets consécutifs du polygone.
- Un angle intérieur d'un polygone régulier est l'angle limité par deux côtés consécutifs du polygone.

Exemple

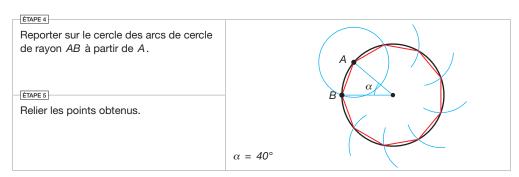


Propriétés

- La mesure, en degrés, de l'angle au centre d'un polygone régulier à n côtés est 360°
- La mesure, en degrés, de l'angle intérieur d'un polygone régulier à n côtés est 180° – 360°

Pour le pentagone régulier ci-contre, l'angle au centre mesure $\frac{360^{\circ}}{r} = 72^{\circ}.$

et l'angle intérieur $180^{\circ} - 72^{\circ} = 108^{\circ}$.



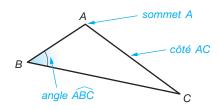
Construire un polygone régulier avec une règle, un rapporteur et un compas

Méthode

Exemple Construire un ennéagone régulier (9 côtés) inscrit dans un cercle de 1,5 cm de rayon.

Tracer un cercle à l'aide du compas.	Tracer un cercle de 1,5 cm de rayon.
Calculer la mesure de l'angle au centre α à l'aide de la formule $\frac{360^{\circ}}{n}$.	$\alpha = \frac{360^{\circ}}{9} = 40^{\circ}$
Construire un angle au centre de mesure α qui coupe le cercle en deux points A et B .	$\alpha = 40^{\circ}$

Remarque


Il est aussi possible de reporter la mesure de l'angle au centre à l'aide du rapporteur.

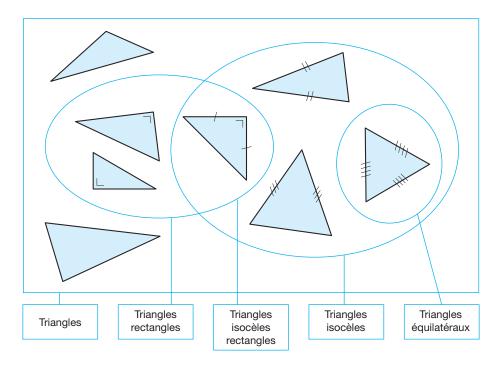
Triangle

Définition

Un triangle est un polygone qui a trois côtés et, par conséquent, trois angles et trois sommets.

Exemple

Triangle: du latin *tri*, trois et *angulus*, angle.

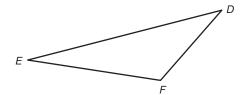

Triangles particuliers

Nom	Figure	Propriétés caractéristiques			
Nom	Figure	Côtés	Angles	Symétries	
■ Triangle équilatéral ETYM Equilatéral: du latin aequus, égal et latus, côté; aux côtés égaux.	60°	Trois côtés isométriques	Trois angles isométriques	Trois axes de symétrie	
■ Triangle isocèle ETYM Isocèle: du grec isos, même et skelos, jambe; aux jambes égales.		Au moins deux côtés isométriques	Au moins deux angles isométriques	Au moins un axe de symétrie	
■ Triangle rectangle ■ Triangle rectangle ■ Hypoténuse: du grec hypo, sous et teinein, tendre; le côté opposé de l'angle droit.	hypoténuse	Deux côtés perpendiculaires Le côté opposé à l'angle droit est l'hypoténuse	Un angle droit		

Remarque

Un triangle peut être à la fois isocèle et rectangle.

Classement des triangles

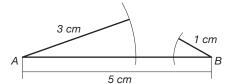

Inégalité triangulaire

Propriété

Quel que soit le triangle, la longueur de n'importe quel côté est inférieure à la somme des longueurs des deux autres côtés.

Exemple

DE < DF + FE EF < ED + DFDF < DE + EF



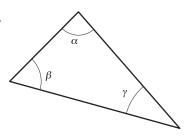
Remarque

Pour vérifier qu'un triangle existe, il n'est pas nécessaire d'essayer de le construire, il suffit de vérifier que la longueur du plus grand côté soit inférieure à la somme des longueurs des deux autres côtés.

Exemples

- Le triangle dont les côtés mesurent 4 cm, 3 cm et 2,5 cm existe puisque 4 < 2,5 + 3.
- Le triangle dont les côtés mesurent 5 cm, 3 cm et 1 cm n'existe pas car 5 > 3 + 1.

On peut donc déterminer l'existence d'un triangle sans devoir le construire.

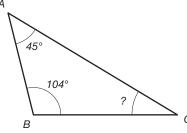

Somme des angles d'un triangle

Propriété

La somme des mesures des angles d'un triangle est égale à 180°.

Exemple

$$\alpha + \beta + \gamma = 180^{\circ}$$

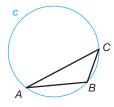

Remarque

A l'aide de cette propriété, on peut calculer la valeur du troisième angle d'un triangle si on connaît la valeur de deux autres.

Exemple

Dans le triangle ABC, la mesure de \widehat{ACB} vaut 31°.

En effet: $\widehat{ACB} = 180^{\circ} - (45^{\circ} + 104^{\circ}) = 31^{\circ}$

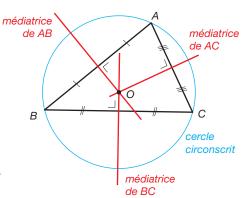

Cercle circonscrit à un triangle et médiatrices

Définition

Le cercle circonscrit à un triangle est le cercle passant par les trois sommets de ce triangle.

Exemple

c est le cercle circonscrit au triangle ABC.



Propriété

Dans tout triangle, les **médiatrices** des côtés se coupent en un point. Ce point est le centre du cercle circonscrit à ce triangle.

Exemple

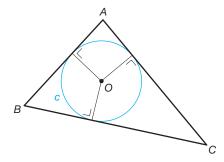
O est le centre du cercle circonscrit au triangle ABC.

Remarque

Les médiatrices se coupent à l'extérieur du triangle lorsqu'un des angles est obtus.

Circonscrit: du latin *circum*, autour et *scribere*, écrire.

••• Médiatrice d'un segment (p. 96), Angle obtus (p. 103)

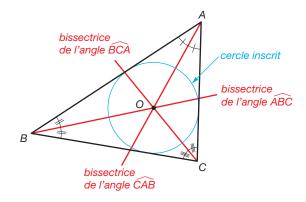

Cercle inscrit à un triangle et bissectrices

Définition

Le cercle inscrit à un triangle est le cercle tangent aux trois côtés de ce triangle.

Exemple

c est le cercle inscrit au triangle ABC. Les trois côtés du triangle sont tangents



Propriété

Les bissectrices des angles d'un triangle se coupent en un point. Ce point est le centre du cercle inscrit à ce triangle.

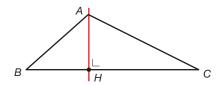
Exemple

O est le centre du cercle inscrit au triangle ABC.

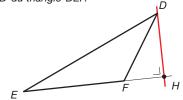
Inscrit: du latin in, à l'intérieur et scribere, écrire.

Tangente à un cercle (p. 100), Bissectrice d'un angle (p. 105)

Hauteurs d'un triangle et orthocentre


Définition

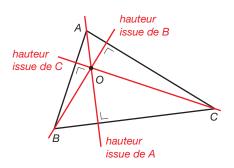
Une hauteur d'un triangle est une droite qui passe par un sommet et qui est perpendiculaire au côté opposé à ce sommet.


⚠ Les hauteurs peuvent être à l'intérieur ou à l'extérieur du triangle.

Exemples

O La droite AH est la hauteur issue de A du triangle ABC.

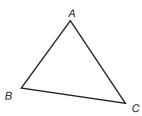
O La droite DH est la hauteur issue de D du triangle DEF.


118 Espace Aide-mémoire

Propriété

Dans tout triangle, les hauteurs se coupent en un point appelé orthocentre.

Exemple


O est l'orthocentre triangle ABC.

Tracer une hauteur d'un triangle avec une équerre

Méthode

Exemple 1 Tracer la hauteur du triangle ABC issue de B.

Repérer le côté opposé au sommet donné, puis placer l'équerre sur ce côté en le prolongeant si nécessaire.

Le côté opposé à B est AC.

B

C

Le côté opposé à B est AC.

A

C

Le côté opposé à B est AC.

A

C

Le côté opposé à B est AC.

A

C

Le côté opposé à B est AC.

A

C

Le côté opposé à B est AC.

A

C

Le côté opposé à B est AC.

A

C

Le côté opposé à B est AC.

A

C

Le côté opposé à B est AC.

A

C

Le côté opposé à B est AC.

A

C

Le côté opposé à B est AC.

A

C

Le côté opposé à B est AC.

A

C

C

Le côté opposé à B est AC.

A

C

C

Le côté opposé à B est AC.

A

C

Le côté opposé à B est AC.

A

C

C

Le côté opposé à B est AC.

A

C

C

Le côté opposé à B est AC.

A

C

C

Le côté opposé à B est AC.

A

C

C

Le côté opposé à B est AC.

A

C

C

Le côté opposé à B est AC.

A

C

C

Le côté opposé à B est AC.

A

C

C

Le côté opposé à B est AC.

A

C

C

Le côté opposé à B est AC.

A

C

C

Le côté opposé à B est AC.

A

C

C

Le côté opposé à B est AC.

A

C

C

Le côté opposé à B est AC.

A

C

C

Le côté opposé à B est AC.

A

C

C

Le côté opposé à B est AC.

A

C

C

Le côté opposé à B est AC.

A

C

C

Le côté opposé à B est AC.

A

C

C

Le côté opposé à B est AC.

A

C

C

Le côté opposé à B est AC.

A

C

C

Le côté opposé à B est AC.

A

C

C

Le côté opposé à B est AC.

A

C

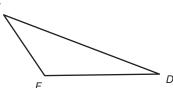
Le côté opposé à B est AC.

A

C

Le côté opposé à B est AC.

A


C

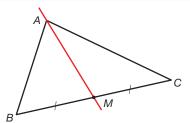
Le côté opposé à B est AC.

ES

Méthode

Exemple 2 Tracer la hauteur du triangle DEF issue de E.

	F
Repérer le côté opposé au sommet donné, puis placer l'équerre sur ce côté en le prolongeant si nécessaire.	Le côté opposé à E est DF.
Faire glisser l'équerre sur le côté opposé pour amener l'équerre sur le sommet donné.	Dans ce cas, il est nécessaire de prolonger le côté DF.
Tracer la droite perpendiculaire au côté <i>DF</i> .	E D

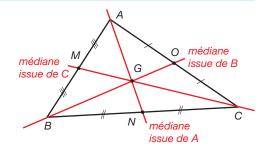

Médianes et centre de gravité

Définition

Une médiane d'un triangle est une droite passant par un sommet et le milieu du côté opposé à ce sommet.

Exemple

La droite AM est la médiane du triangle ABC issue de A.

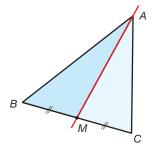


Propriété 1

Dans tout triangle, ses médianes se coupent en un même point appelé centre de gravité du triangle.

Exemple

G est le centre de gravité du triangle ABC. M, N et O sont respectivement les milieux des côtés du triangle.



Propriété 2 Une médiane partage le triangle en deux triangles de même aire.

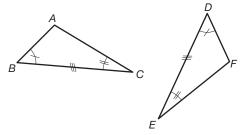
Exemple

La droite AM est la médiane issue de A du triangle ABC, donc $Aire_{ABM} = Aire_{ACM}$

 $Aire_{ABM} = 2,25 \text{ cm}^2$ $Aire_{ACM} = 2,25 \text{ cm}^2$

Triangles isométriques

Définition

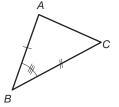

Deux triangles sont isométriques si l'un est l'image de l'autre par une isométrie. Cela signifie qu'ils sont **superposables**.

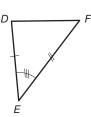
Propriété 1

Deux triangles sont isométriques s'ils ont un côté isométrique compris entre deux angles respectivement isométriques.

Exemple

BC = DE, $\widehat{ABC} = \widehat{FDE}$ et $\widehat{BCA} = \widehat{DEF}$, donc les triangles ABC et DEF sont isométriques.

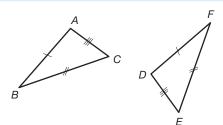



Propriété 2

Deux triangles sont isométriques s'ils ont deux côtés respectivement isométriques adjacents à un angle isométrique.

Exemple

AB = DE, BC = EF et $\widehat{ABC} = \widehat{DEF}$, donc les triangles ABC et DEF sont isométriques.



Propriété 3

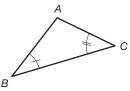
Deux triangles sont isométriques s'ils ont trois côtés respectivement isométriques.

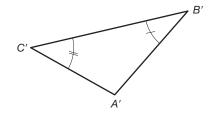
Exemple

AB = DF, BC = EF et AC = DE, donc les triangles ABC et DEF sont isométriques.

Segments isométriques (p. 92), Isométrie (p. 128)

Définition

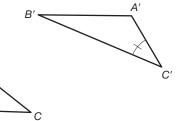

Deux triangles sont semblables si l'un est l'image de l'autre par une **similitude**. Cela signifie que l'un est un agrandissement ou une réduction de l'autre.


Propriété 1

Deux triangles sont semblables s'ils ont deux angles respectivement isométriques (le troisième angle l'est donc aussi).

Exemple

 $\widehat{ABC} = \widehat{A'B'C'}$ et $\widehat{BCA} = \widehat{B'C'A'}$ donc les triangles ABC et A'B'C' sont semblables.

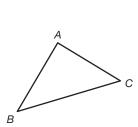

Propriété 2

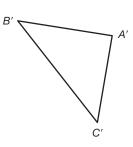
Deux triangles sont semblables s'ils ont un angle isométrique compris entre deux côtés respectivement proportionnels.

Exemple

 $\widehat{ACB} = \widehat{A'C'B'}$ et $\frac{CA}{C'A'} = \frac{CB}{C'B'} = 1,4$

donc les triangles ABC et A'B'C' sont semblables.


Propriété 3


Deux triangles sont semblables s'ils ont leurs côtés respectivement proportionnels.

Exemple

 $\frac{A'B'}{AB} \ = \ \frac{B'C'}{BC} \ = \ \frac{A'C'}{AC} \ = \ 1,2$

donc les triangles ABC et A'B'C' sont semblables.

Deux figures sont semblables si l'on obtient les dimensions de l'une en multipliant celles de l'autre par un même nombre positif non nul et si leurs angles sont respectivement isométriques.

Exemple

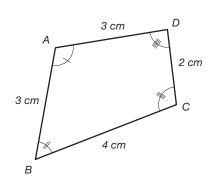
 $\widehat{D'A'B'} = \widehat{DAB}$

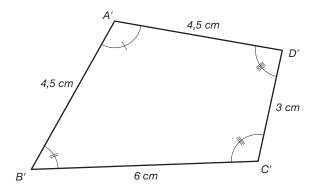
$$\widehat{A'B'C'} = \widehat{ABC}$$

$$\widehat{B'C'D'} = \widehat{BCD}$$

$$\widehat{C'D'A'} = \widehat{CDA}$$

$$\frac{A'B'}{AB} = \frac{4,5}{3} = 1,5$$


On vérifie ensuite que:


$$B'C' = 1,5 \cdot BC$$

$$C'D' = 1,5 \cdot CD$$

$$A'D' = 1,5 \cdot AD$$

Donc les quadrilatères ABCD et A'B'C'D' sont semblables.

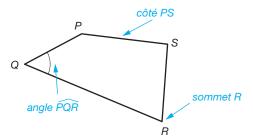
Conséquence Les dimensions de deux figures semblables sont respectivement proportionnelles.

Définitions

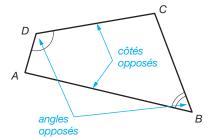
- Agrandir une figure, c'est multiplier chaque dimension de celle-ci par un même nombre positif plus grand que 1 et conserver la valeur de ses angles.
- **Réduire** une figure, c'est multiplier chaque dimension de celle-ci par un même nombre positif non nul plus petit que 1 et conserver la valeur de ses angles.

Conséquence Une figure et son image par un agrandissement ou une réduction sont des figures semblables.

Proportionnalité (p. 55), Angles isométriques (p. 105), Homothétie (p. 138), Similitude (p. 141)


Quadrilatère

Définition


Un quadrilatère est un polygone qui a quatre côtés.

Exemple

PQRS est un quadrilatère.

- Les côtés DC et AB; AD et BC sont appelés côtés opposés.
- Les angles ABC et ADC; BAD et BCD sont appelés angles opposés.

Propriété

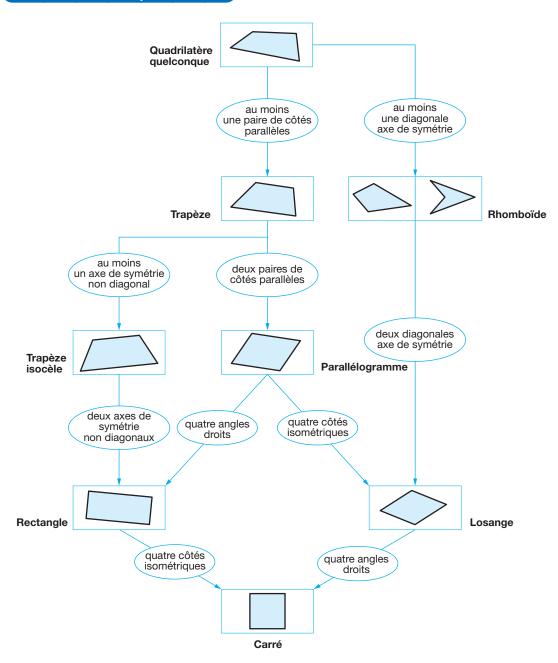
La somme des mesures des angles d'un quadrilatère est égale à 360°.

Quadrilatère: du latin quattuor, quatre et latus, côté.

Angle (p. 101), Polygone (p. 110), Somme des angles d'un triangle (p. 116)

Quadrilatères particuliers

Remarque


Dans le tableau qui suit, les propriétés caractéristiques permettent de construire, reconnaître ou prouver la nature du quadrilatère correspondant.

Nom	Figure	Propriétés caractéristiques	Autres propriétés
■ Trapèze ÉTYM Trapèze: du grec trapeza, table.		Au moins une paire de côtés parallèles.	
■ Trapèze isocèle		Au moins une paire de côtés parallèles et les deux autres côtés isométriques. Deux paires d'angles isométriques.	Des diagonales isométriques. Au moins un axe de symétrie.

Nom	Figure	Propriétés caractéristiques	Autres propriétés
■ Trapèze rectangle		Au moins une paire de côtés opposés parallèles et au moins deux angles droits.	
■ Parallélogramme		Deux paires de côtés parallèles. Deux paires de côtés opposés isométriques. Des diagonales qui se coupent en leur milieu. Des angles opposés isométriques. Un centre de symétrie.	
Rectangle: du latin rectus, droit et angulus, angle.		Quatre angles droits. Des diagonales isométriques qui se coupent en leur milieu. Deux axes de symétrie, les médiatrices des côtés.	Un centre de symétrie. Deux paires de côtés parallèles et isométriques.
Carré: du latin quadratus; participe passé de quadrare, carrer, rendre carré.		Quatre angles droits et quatre côtés isométriques. Des diagonales isométriques, perpendiculaires qui se coupent en leur milieu. Quatre axes de symétrie, ses diagonales¹ et les médiatrices des côtés.	Un centre de symétrie.
■ Losange		Quatre côtés isométriques. Des diagonales perpendiculaires qui se coupent en leur milieu. Deux axes de symétrie, ses diagonales ¹ .	Un centre de symétrie. Deux paires de côtés parallèles. Angles opposés isométriques.
Rhomboïde: cerf-volant Fer de lance		Deux paires de côtés consécutifs isométriques. Une diagonale aussi axe de symétrie ¹ . Des diagonales perpendiculaires, l'une coupe l'autre en son milieu.	Au moins deux angles opposés isométriques.
	*		

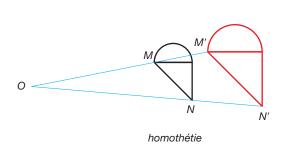
- Médiatrice d'un segment (p. 96), Angles isométriques (p. 105), Diagonale d'un polygone (p. 111)
- ¹ Bien que conscients que les axes de symétrie sont des droites et les diagonales des segments, les rédacteurs assument l'abus qui consiste à lier, dans ces formulations, axe de symétrie et diagonale.

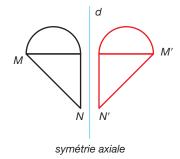
Classement des quadrilatères

Remarque

Ce tableau, comme les propriétés caractéristiques des quadrilatères, permet de constater que:

- un carré est un rectangle, un losange, un parallélogramme, un rhomboïde, un trapèze;
- un rectangle est un parallélogramme, un trapèze;
- un losange est un parallélogramme, un rhomboïde, un trapèze;
- un parallélogramme est un trapèze.
- Segments isométriques (p. 92), Diagonale d'un polygone (p. 111), Axe de symétrie (p. 132)


Transformations géométriques

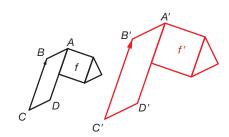

Transformations du plan

Définition

On appelle transformation du plan dans lui-même tout procédé (déplacement, agrandissement, déformation, etc.) qui, à partir de n'importe quel point M du plan, permet de construire un point M' du plan. On dit que M' est l'image de M par cette transformation. M' est unique.

Exemples

Quelques propriétés des transformations du plan

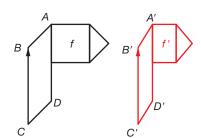

Propriété 1

Une transformation conserve les **longueurs**, si chaque segment a pour image un segment de même longueur.

Contre-exemple

Un agrandissement ne conserve pas les longueurs:

$$AB \neq A'B'$$
; $BC \neq B'C'$; ...


Propriété 2

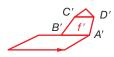
Une transformation conserve les **mesures des angles**, si chaque angle a pour image un angle de même mesure.

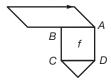
Contre-exemple

La transformation ci-contre ne conserve pas les mesures des angles:

$$\widehat{ABC} \neq \widehat{A'B'C'}$$
; $\widehat{BCD} \neq \widehat{B'C'D'}$; ...

ES

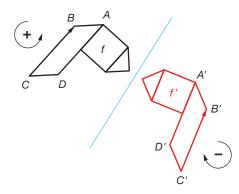

Propriété 3


Une transformation conserve le **parallélisme**, si chaque paire de droites ou de segments parallèles a pour image une paire de droites ou de segments parallèles.

Contre-exemple

La transformation ci-contre ne conserve pas le parallélisme :

AD // BC, mais A'D' n'est pas parallèle pas à B'C'.

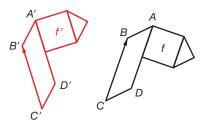

Propriété 4

Une transformation conserve l'**orientation**, si, en suivant les sommets consécutifs de la figure et de son image, on tourne dans le même sens.

Contre-exemple

Une symétrie axiale ne conserve pas l'orientation:

on lit les lettres ABCD et A'B'C'D' en tournant dans des sens différents.

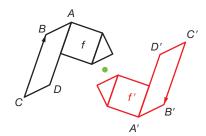

Propriété 5

Une transformation conserve les **directions**, si chaque droite a pour image une droite qui lui est parallèle.

Contre-exemple

Une rotation d'angle différent de 180° ou 360° ne conserve pas les directions:

les droites AB et A'B' ne sont pas parallèles.


Propriété 6

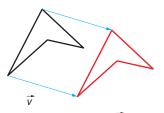
Une transformation conserve le **sens des vecteurs**, si chaque vecteur a la même direction et le même sens que son image.

Contre-exemple

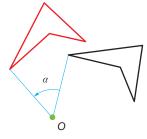
Une symétrie centrale ne conserve pas le sens des vecteurs :

les vecteurs \overrightarrow{CB} et $\overrightarrow{C'B'}$ n'ont pas le même sens.

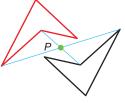
Figures semblables (p. 122), Vecteur (p. 128), Symétrie axiale (p. 130), Symétrie centrale (p. 132)

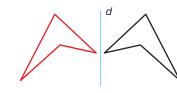

Une isométrie est une transformation du plan qui conserve les longueurs.

- Conséquences Une isométrie conserve la mesure des angles.
 - Une figure et son image par une isométrie ont la même forme et les mêmes dimensions, elles sont donc superposables.


Remarque

La translation, la rotation, la symétrie centrale et la symétrie axiale sont des isométries.


Exemples


translation de vecteur v

rotation $\Re(O; \alpha)$

symétrie centrale S (P)

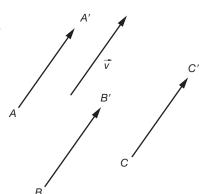
symétrie axiale S (d)

Isométrie: du grec isos, même et metron, mesure.

Translation (p. 129), Symétrie axiale (p. 130), Symétrie centrale (p. 132), Rotation (p. 134)

Vecteur

Définitions


- Un vecteur est un segment de droite orienté (flèche), noté, par exemple, v.
- Un vecteur possède une longueur, une direction et un sens.

Deux vecteurs sont égaux s'ils ont la même longueur, la même direction et le même sens.

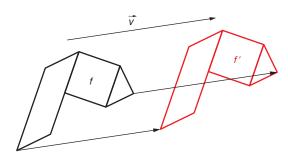
Exemple

Les vecteurs $\overrightarrow{AA'}$, $\overrightarrow{BB'}$, $\overrightarrow{CC'}$ et \overrightarrow{v} sont égaux, car ils ont la même direction (ils sont parallèles), même sens et même longueur.

On peut donc écrire $\overrightarrow{AA'} = \overrightarrow{BB'} = \overrightarrow{CC'} = \overrightarrow{v}$.

Remarque

Un vecteur peut être représenté par une infinité de segments orientés (flèches).


Vecteur: du latin *vector*, celui qui transporte.

Translation

- Définitions 1 Une translation est une isométrie qui consiste à faire glisser une figure sans la faire tourner.
 - Une translation est caractérisée par un vecteur de translation (\vec{v}) qui indique: la direction, le sens et la longueur du déplacement.

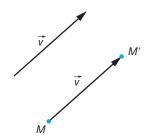
Exemple

La transformation qui amène f en f' est une translation de vecteur \overrightarrow{v} .

Notation

Du français...

«La figure f a pour image la figure f'par la translation de vecteur \vec{v} .»


... à l'écriture mathématique

$$f \stackrel{\mathcal{T}'(\overrightarrow{v})}{\longmapsto} f'$$

Définition 2

L'image d'un point M par une translation de vecteur \overrightarrow{v} est le point M'tel que $\overrightarrow{MM'} = \overrightarrow{v}$.

Exemple

 $\overline{MM'}$ a la même longueur, la même direction et le même sens que le vecteur \overline{v} .

Propriétés

La translation est une transformation qui conserve:

- les longueurs (isométrie) et la mesure des angles;
- le parallélisme;
- l'orientation;
- les directions et le sens des vecteurs.

Translation: du latin *translatio*, transfert.

Quelques propriétés des transformations du plan (p. 126), Isométrie (p. 128), Vecteur (p. 128),

Construire l'image d'un point par une translation

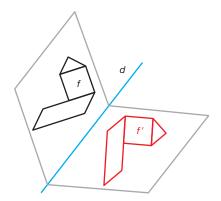
Méthode

Exemple Construire l'image du point M par la translation de vecteur \vec{v} .

M _

ÉTAPE 1 Tracer une droite f passant par le point M de même direction que le vecteur \overrightarrow{v} . ÉTAPE 2 Construire le point M' tel que $MM' = \overrightarrow{v}$. M' M' est l'image du point M par la translation de vecteur \vec{v} .

Remarque


Pour construire l'image d'un polygone par une translation, on peut:

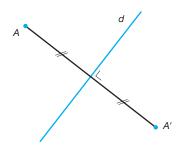
- construire l'image de chacun de ses sommets et les relier;
- construire l'image d'un sommet, puis utiliser les propriétés de la translation.

Symétrie axiale

- Définitions 1 Une symétrie axiale par rapport à une droite *d* est une isométrie telle qu'en pliant la feuille suivant la droite d, une figure et son image se superposent.
 - d est appelé axe de symétrie.

La transformation qui amène f en f' est une symétrie axiale.

Notation


Du français... «La figure f a pour image la figure f'par la symétrie d'axe d.»

... à l'écriture mathématique

$$f \stackrel{S(d)}{\longmapsto} f'$$

L'image d'un point A par une symétrie d'axe d est le point A' tel que d est la médiatrice du segment AA'. On dit que A' est le symétrique de A par rapport à la droite d.

Exemple

Propriété

La symétrie axiale est une transformation qui conserve les longueurs, la mesure des angles et le parallélisme mais ne conserve pas l'orientation, les directions et le sens des vecteurs.

Remarques

- Une droite (non parallèle à l'axe de symétrie) et son image se coupent sur l'axe de symétrie.
- Tous les points de l'axe de symétrie sont images d'eux-mêmes : ce sont des points fixes.
- Quelques propriétés des transformations du plan (p. 126), Isométrie (p. 128), Axe de symétrie (p. 132)

Construire l'image d'un point par une symétrie axiale

Méthode

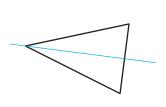
Exemple Construire l'image du point P par la symétrie axiale d'axe d.

d × P
M
√ d
→ P
P' M

Remarque

Pour construire l'image d'un polygone par une symétrie axiale, on peut :

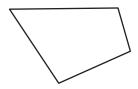
- construire l'image de chacun de ses sommets et les relier;
- construire l'image de deux sommets, puis utiliser les propriétés des symétries axiales.


Une droite *d* est un axe de symétrie d'une figure si, après pliage le long de cette droite, les deux moitiés de la figure se superposent.

Exemple

Une figure peut...

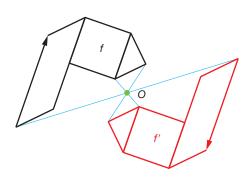
... avoir un axe de symétrie


... avoir plusieurs axes de symétrie ... ne pas avoir d'axe de symétrie

triangle isocèle

pentagone régulier

quadrilatère quelconque


Symétrie centrale

Définition 1

Une symétrie centrale est une isométrie qui consiste à faire tourner une figure d'un demi-tour autour d'un point appelé **centre de symétrie**.

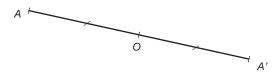
Exemple

La transformation qui amène f en f' est une symétrie centrale.

Notation

Du français...

«La figure f a pour image la figure f' par la symétrie de centre O.»


... à l'écriture mathématique

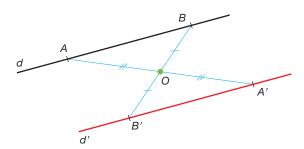
$$f \stackrel{S(O)}{\longmapsto} f'$$

Définition 2

L'image d'un point A par une symétrie de centre O est le point A' tel que O est le milieu du segment AA'. On dit que A' est le symétrique de A par rapport à O.

Exemple

ES


Propriété

La symétrie centrale est une transformation qui conserve les longueurs (isométrie), la mesure des angles, le parallélisme, l'orientation et les directions mais ne conserve pas le sens des vecteurs.

Par une symétrie centrale, l'image d'une droite est une droite parallèle.

Exemple

d // d'

Quelques propriétés des transformations du plan (p. 126), Isométrie (p. 128), Centre de symétrie (p. 134), Rotation (p. 134)

Construire l'image d'un point par une symétrie centrale

Méthode

Exemple Construire l'image du point A par la symétrie de centre O.

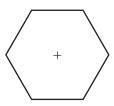
A ×

> 0 ×

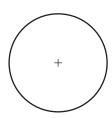
Tracer la demi-droite d'origine A passant par le centre de symétrie O.	A X O
ETAPE 2 Placer le point A' sur cette demi-droite tel que $OA = OA'$.	A
A' est l'image du point A par la symétrie de centre O.	A'

Remarque

Pour construire l'image d'un polygone par une symétrie centrale, on peut :

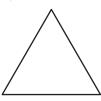

- construire l'image de chacun de ses sommets et les relier;
- construire l'image d'un sommet, puis utiliser les propriétés des symétries centrales.

- Une figure a un centre de symétrie si, lorsqu'on la fait tourner d'un demi-tour autour de ce point, elle se superpose à elle-même.
- Le centre de symétrie d'une figure est un point tel que tous les points de la figure sont deux à deux symétriques par rapport à lui.

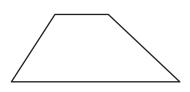

Exemples

Une figure peut...

... avoir un centre de symétrie



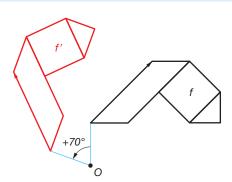
hexagone régulier



cercle

... ne pas avoir de centre de symétrie

triangle équilatéral


trapèze

Rotation

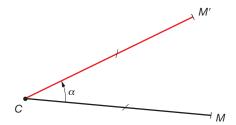
- Définitions 1 Une rotation est une isométrie qui consiste à faire tourner une figure autour d'un point appelé centre de rotation, suivant un angle donné appelé angle de rotation.
 - Cet angle est précédé d'un signe qui indique le sens de la rotation :
 - si c'est le signe +, on tourne dans le sens inverse des aiguilles d'une montre;
 - si c'est le signe –, on tourne dans le sens des aiguilles d'une montre.

Exemple

La transformation qui amène f en f' est une rotation.

Notation

Du français... «La figure f a pour image la figure f'par la rotation de centre O et d'angle +70°.»


... à l'écriture mathématique

$$f \stackrel{\mathcal{R} (O; +70^{\circ})}{\longmapsto} f'$$

Etant donné une mesure α d'un angle et un point C, on appelle **rotation** de centre C et d'angle α la transformation qui, à tout point M (différent de C), associe le point M' tel que:

- *CM* = *CM*′;
- $\widehat{MCM'} = \alpha$ (en respectant le sens de rotation);
- C est un point fixe (invariant).

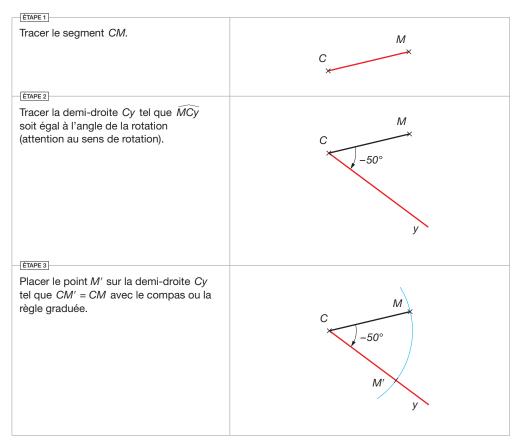
Exemple

Notation On note cette rotation $\mathcal{R}(C; \alpha)$.

- Remarques L'image de C par la rotation de centre C est C lui-même.
 - Cas particulier: $\mathcal{R}(C; 180^\circ)$ est la symétrie de centre C.

Propriété

Une rotation est une transformation qui conserve les longueurs (isométries), la mesure des angles, le parallélisme et l'orientation mais ne conserve pas les directions sauf si l'angle mesure 180° ou 360°.

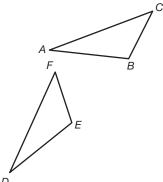

ETYM Rotation: du latin rota, roue; rotare, tourner comme une roue.

Méthode

Espace

Exemple Construire l'image M' du point M par la rotation $\Re(C; -50^\circ)$.

Remarque


Pour construire l'image d'un polygone par une rotation, on peut:

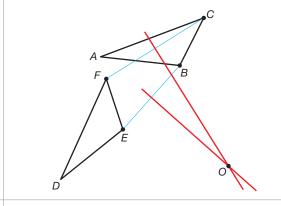
- construire l'image de chacun de ses sommets et les relier;
- construire l'image de deux sommets, puis utiliser les propriétés des rotations.

Retrouver le centre et l'angle d'une rotation

Méthode

Exemple Le triangle ABC a pour image le triangle DEF par une rotation. Retrouver les caractéristiques de cette rotation.

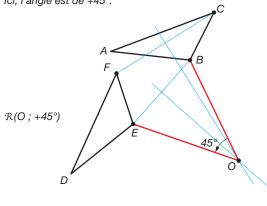
ÉTAPE 1


Repérer deux couples de points et leur image par la rotation. Pour cela, on peut identifier des sommets d'angles isométriques. $\widehat{ABC} = \widehat{DEF}$ donc l'image de B est E. $\widehat{ACB} = \widehat{DFE}$ donc l'image de C est F.

ÉTAPE 2

Tracer la médiatrice des segments dont les extrémités sont un point et son image.

Leur point d'intersection est le centre de la rotation.


On trace les médiatrices des segments BE et CF. Le point O intersection de ces deux médiatrices est le centre de la rotation.

ÉTAPE 3

Mesurer l'angle de la rotation (attention au sens de rotation).

L'angle de la rotation est la mesure de l'angle $\widehat{\mathsf{BOE}}$. Ici, l'angle est de $+45^\circ$.

--- Médiatrice d'un segment (p. 96)

Une homothétie est une transformation qui consiste à agrandir ou réduire une figure tout en conservant les directions.

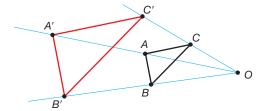
Définition 2

Etant donné un point O et un nombre k non nul, on appelle homothétie **de centre O** et de rapport k la transformation qui, à tout point M, associe un point M' tel que:

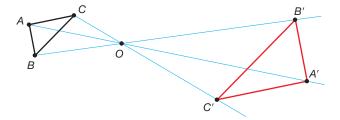
- le point O est un point fixe;
- les points O, M et M' sont alignés.
- Si k > 0, les vecteurs \overrightarrow{OM} et $\overrightarrow{OM'}$ ont le même sens et $OM' = k \cdot OM$;
- si k < 0, les vecteurs \overrightarrow{OM} et $\overrightarrow{OM'}$ sont de sens contraire et $OM' = -k \cdot OM$.

Notation

Du français...


«La figure f a pour image la figure f'par homothétie de centre O et de rapport k.»

... à l'écriture mathématique

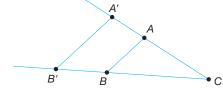

$$f \stackrel{\mathcal{H}(O;k)}{\longmapsto} f$$

Exemples

○ H(O; 2) Les vecteurs OA et OA' sont de même sens et $OA' = 2 \cdot OA$.

○ \mathcal{H} (O; -2) Les vecteurs OA et OA' sont de sens contraire et $OA' = -2 \cdot OA$.

Propriété


Si un segment AB a pour image un segment A'B' par une homothétie de centre C et de rapport k, alors $\frac{A'B'}{AB} = k$ si k > 0 ou $\frac{A'B'}{AB} = -k$ si k < 0.

Exemple

A'B' est l'image de AB par une homothétie de centre C et de rapport 1,5.

$$CA = 3$$
 $CB = 4$ $CA' = 4,5$ $CB' = 6$

Donc:
$$\frac{A'B'}{AB} = 1,5$$
.

Conséquence Pour retrouver le rapport d'une homothétie sans connaître son centre, on peut calculer le rapport des longueurs des segments image l'un de l'autre par l'homothétie.

ES

On distingue quatre types d'homothéties.

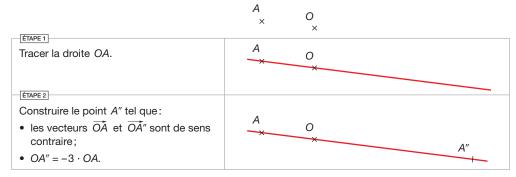
Nom	Propriétés	Caractéristiques
L'agrandissement direct	Il conserve:le rapport des longueurs, la mesure des angles, le parallélisme;l'orientation;la direction et le sens des vecteurs.	 La figure image est plus grande que celle de départ; k > 1; la figure et son image sont du même côté du centre d'homothétie.
	Exemple Ici, k = 2.	f f'
La réduction directe	Il conserve:le rapport des longueurs, la mesure des angles, le parallélisme;l'orientation;la direction et le sens des vecteurs.	 La figure image est plus petite que celle de départ; 0 < k < 1; la figure et son image sont du même côté du centre d'homothétie.
	Exemple Ici, $k = \frac{1}{2} = 0.5$.	f' O
L'agrandissement indirect	Il conserve:le rapport des longueurs, la mesure des angles, le parallélisme;l'orientation;la direction mais inverse le sens des vecteurs.	 La figure image est plus grande que celle de départ; k < -1; la figure image est de l'autre côté du centre d'homothétie.
	Exemple Ici, k = -2.	X' f'
■ La réduction indirecte	Il conserve: • le rapport des longueurs, la mesure des angles, le parallélisme; • l'orientation; • la direction mais inverse le sens des vecteurs.	 La figure image est plus petite que celle de départ; -1 < k < 0; la figure image est de l'autre côté du centre d'homothétie.
	Exemple Ici, $k = -\frac{1}{2} = -0.5$.	X' f'

Homothétie: du grec homos, semblable et thetos, position.

Construire l'image d'un point par une homothétie

Méthode

Construire l'image d'un point par une homothétie de rapport positif.


Exemple 1 Construire l'image du point A par l'homothétie de centre O et de rapport k = 3.

ÉTAPE 1	A × O ×
Tracer la droite <i>OA</i> .	A O ×
Construire le point A' tel que: • les vecteurs \overrightarrow{OA} et \overrightarrow{OA} ' sont de même sens; • $OA' = 3 \cdot OA$.	A' A O

Méthode

Construire l'image d'un point par une homothétie de rapport négatif.

Exemple 2 Construire l'image du point A par l'homothétie de centre O et de rapport k = -3.

Remarque

Pour construire l'image d'un polygone par une homothétie, on peut :

- construire l'image de chacun de ses sommets et les joindre;
- construire l'image d'un sommet et compléter la figure en utilisant les propriétés des homothéties.

Propriétés des isométries et des homothéties du plan

Conservation Transformation	Longueurs	Mesure des angles	Parallélisme	Orientation	Directions	Sens des vecteurs
Translation	oui	oui	oui	oui	oui	oui
Rotation	oui	oui	oui	oui	non ¹	non ²
Symétrie centrale	oui	oui	oui	oui	oui	non
Symétrie axiale	oui	oui	oui	non	non	non
Homothétie de rapport positif	non ³	oui	oui	oui	oui	oui
Homothétie de rapport négatif	non ⁴	oui	oui	oui	oui	non

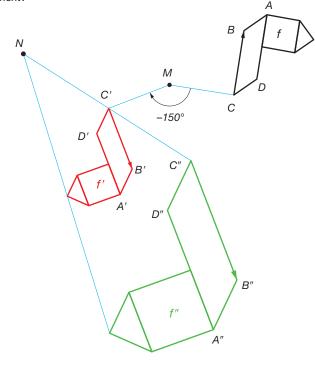
 $^{^{1}}$ sauf si l'angle mesure 180 $^{\circ}$ ou 360 $^{\circ}$

² sauf si l'angle mesure 360°

³ sauf si le rapport est 1

⁴ sauf si le rapport est -1

Similitude

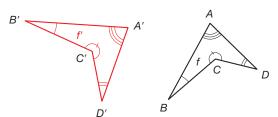

Définition

Une similitude est la composition d'isométries et d'homothéties. Elle consiste à appliquer successivement une isométrie, puis une homothétie ou inversement.

Exemple

La figure f" est l'image de f par une similitude. On effectue en effet successivement:

- Pour passer de f à f': la rotation: R(M; -150°)
- Pour passer de f'à f": l'homothétie: ℋ(N; 2)


Propriété

Une similitude (qui n'est pas une isométrie) est une transformation qui agrandit ou réduit une figure. Elle conserve la mesure des angles et le rapport des longueurs.

Exemple

Les figures f et f' sont images l'une de l'autre par une similitude.

$$\frac{A'B'}{AB} = \frac{B'C'}{BC} = \frac{C'D'}{CD} = \frac{D'A'}{DA}$$

Remarque

Par une similitude, une figure et son image ont la même forme, mais pas nécessairement les mêmes dimensions.

Similitude: du latin similis, semblable.

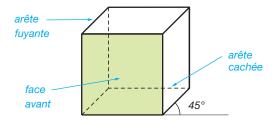
Isométrie (p. 128), Homothétie (p. 138)

Géométrie dans l'espace

Représentation d'un objet dans l'espace

Il y a plusieurs manières de représenter un polyèdre sur une feuille de papier. En voici quelques-unes.

La perspective cavalière


Définition

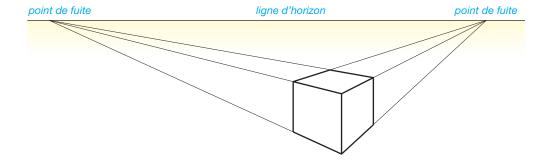
La perspective cavalière possède les caractéristiques suivantes:

- elle privilégie une face de l'objet, appelée face avant, représentée sans déformation;
- les arêtes perpendiculaires à la face avant fuient vers la droite ou vers la gauche, généralement avec une inclinaison de 30° ou de 45°;
- les longueurs des arêtes fuyantes sont généralement réduites de moitié ou d'un tiers.

Exemple

Cube en perspective cavalière.

La perspective artistique


Définition

La perspective artistique possède les caractéristiques suivantes:

- elle est construite à partir de points de fuite situés sur une ligne d'horizon;
- l'objet est représenté tel que l'œil le perçoit.

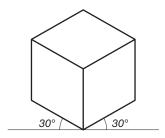
Exemple

Cube en perspective à deux points de fuite.

ES

Espace

La perspective isométrique

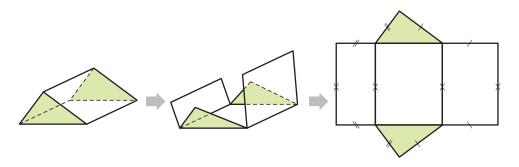

Définition

La perspective isométrique possède les caractéristiques suivantes:

- les arêtes verticales de l'objet restent verticales sur le dessin;
- les arêtes horizontales fuient à gauche et à droite avec une inclinaison de 30°;
- l'échelle est la même pour les trois dimensions.

Exemple

Cube en perspective isométrique.


Le développement

Définition

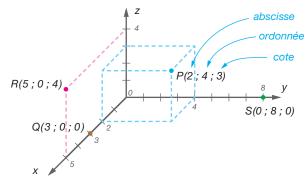
Le **développement d'un solide**, aussi appelé **patron**, est une figure plane qui permet de construire ce solide après découpage et pliage. Le nombre de faces du développement est exactement celui du solide.

Exemple

Développement d'un prisme droit dont la base est un triangle rectangle.

Remarque

Pour reconnaître si le développement d'un solide est correct, on peut le plier mentalement (c'est-à-dire imaginer qu'on le découpe et qu'on reconstitue le solide), puis s'assurer:

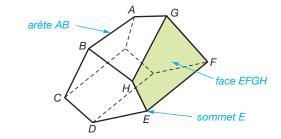

- que le nombre et la forme des faces soient corrects;
- que les arêtes amenées à se superposer lors du pliage soient de la même longueur;
- que deux faces ne se superposeront pas.

Repérage d'un point dans l'espace

Définitions

- Pour pouvoir repérer un point dans l'espace, on peut utiliser trois axes gradués de même origine. Ces axes sont généralement perpendiculaires les uns aux autres. Ils forment ce qu'on appelle un repère.
- Le point d'intersection des axes est appelé origine du repère.
- Un point est alors repéré par un triplet (x ; y ; z) de nombres réels, appelé coordonnées du point.
- Le 1^{er} nombre *x* du triplet est appelé **abscisse**. Il situe le point par rapport à l'axe des *x*.
- Le 2^e nombre y du triplet est appelé ordonnée. Il situe le point par rapport à l'axe des y.
- Le 3^e nombre z du triplet est appelé **cote**. Il situe le point par rapport à l'axe des z.

Exemple



Polyèdre

Définition

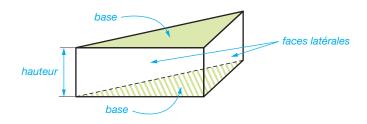
Un polyèdre est un solide dont toutes les faces sont des polygones.

Exemples

Le cube, le parallélépipède rectangle, la pyramide, etc. sont des polyèdres.

Contre-exemples

Le cylindre, le cône, la boule, etc. ne sont pas des polyèdres.


--- Polygone (p. 110)

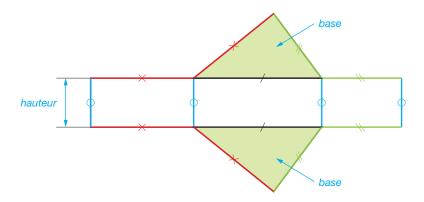
Prisme droit

Définitions

- Un prisme droit est un polyèdre qui possède:
 - deux faces polygonales, parallèles et superposables, appelées les bases du prisme droit;
 - · des faces latérales rectangulaires.
- La distance entre les deux bases est appelée hauteur du prisme droit.

Exemple

Conséquence Toutes les faces latérales d'un prisme droit sont perpendiculaires aux deux bases.


Développement d'un prisme droit

Le développement (ou patron) d'un prisme droit est formé:

- de deux polygones qui sont les bases du prisme droit;
- de rectangles dont une des dimensions est la hauteur du prisme droit. L'autre dimension est égale au côté correspondant de la base.

Exemple

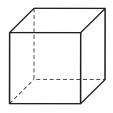
Développement possible d'un prisme droit à base triangulaire.

146 Espace Aide-mémoire

Parallélépipède rectangle ou pavé droit

Définition

Un parallélépipède rectangle est un polyèdre dont les six faces sont des rectangles. On l'appelle aussi pavé droit. Les faces opposées sont des rectangles superposables.

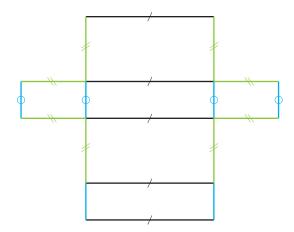

Exemple

Définition

Un **cube** est un polyèdre dont les six faces sont des carrés identiques. C'est un parallélépipède rectangle particulier.

Exemple

ES


Conséquence Un parallélépipède rectangle est un prisme droit particulier.

Développement d'un parallélépipède rectangle ou pavé droit

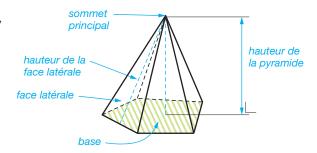
Le développement (ou patron) d'un parallélépipède rectangle est formé de six rectangles.

Exemple

Développement possible d'un parallélépipède rectangle.

---- Polyèdre (p. 144), Prisme droit (p. 145)

Espace


Pyramide

Définitions

- Une pyramide est un polyèdre dont la base est un polygone et dont les faces latérales sont des triangles qui ont un sommet commun appelé sommet principal de la pyramide.
- La distance entre ce sommet et la base est appelée hauteur de la pyramide.

Exemple

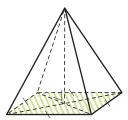
Cette pyramide possède six sommets, cinq appartenant à la base et le sommet principal.

Ne pas confondre la hauteur de la pyramide avec la hauteur d'une des faces latérales.

Définition

Un tétraèdre est une pyramide à base triangulaire.

Exemple

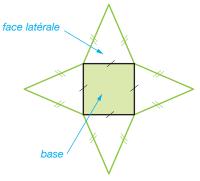


Définitions

Une **pyramide** est **régulière** si sa base est un polygone régulier et si ses faces latérales sont des triangles isocèles. Son sommet principal se projette perpendiculairement au centre de la base.

Exemple

Pyramide régulière à base carrée.



Développement de la pyramide

Le développement (ou patron) d'une pyramide est formé d'un polygone qui est la base de la pyramide et de triangles.

Exemple

Développement possible d'une pyramide dont la base est un quadrilatère.

Polygone (p. 110), Polyèdre (p. 144), Polyèdre régulier (p. 148)

Polyèdre régulier

Définitions

Un polyèdre régulier est un polyèdre dont les faces sont des polygones réguliers isométriques et dont chacun des sommets est l'intersection d'un même nombre d'arêtes.

Remarques

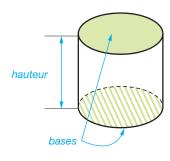
- Si les faces du polyèdre sont convexes, on parle de polyèdre régulier convexe.
- Il y a neuf polyèdres réguliers dont cinq sont convexes. Ils sont appelés polyèdres de Platon.

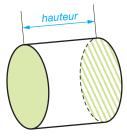
Les cinq polyèdres réguliers convexe

Nom	Figure	Définition
■ Cube		Polyèdre dont les six faces sont des carrés.
■ Tétraèdre régulier		Polyèdre dont les quatre faces sont des triangles équilatéraux. C'est une pyramide particulière.
Octaèdre régulier		Polyèdre dont les huit faces sont des triangles équilatéraux.
■ Dodécaèdre régulier		Polyèdre dont les douze faces sont des pentagones réguliers.
■ Icosaèdre régulier		Polyèdre dont les vingt faces sont des triangles équilatéraux.

Polyèdre: du grec polis, beaucoup et hedra, face: plusieurs faces.

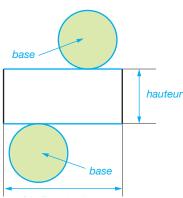
Polygone convexe ou non convexe (p. 111), Polygone régulier (p. 112)


Espace


Cylindre droit

Définitions

- Un cylindre a deux faces superposables et parallèles qui sont des disques.
 Ces faces sont appelées bases du cylindre.
- La distance entre ces deux faces est appelée hauteur du cylindre.


Exemples

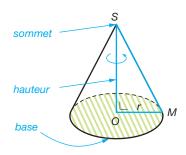
Développement du cylindre droit

Le développement (ou patron) d'un cylindre droit est formé de deux disques qui sont les bases du cylindre et (généralement) d'un rectangle qui est la surface latérale du cylindre. Une dimension de ce rectangle est la hauteur du cylindre et l'autre dimension est le périmètre d'un des disques de base.

Remarque

Les deux cercles sont tangents aux côtés du rectangle qui ne correspondent pas à la hauteur.

ETYM Cylindre: du grec kulindros, rouleau.


Cône de révolution

Définitions

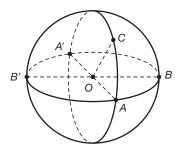
- Un cône de révolution est le solide obtenu en faisant tourner un triangle rectangle autour d'un côté de l'angle droit. Sa base est un disque.
- La distance entre le sommet du cône et le centre du disque de base est la hauteur du cône.

Exemple

En faisant tourner le triangle rectangle SOM autour du côté SO on obtient le cône représenté ci-contre.

150 Espace Aide-mémoire

Sphère ou boule

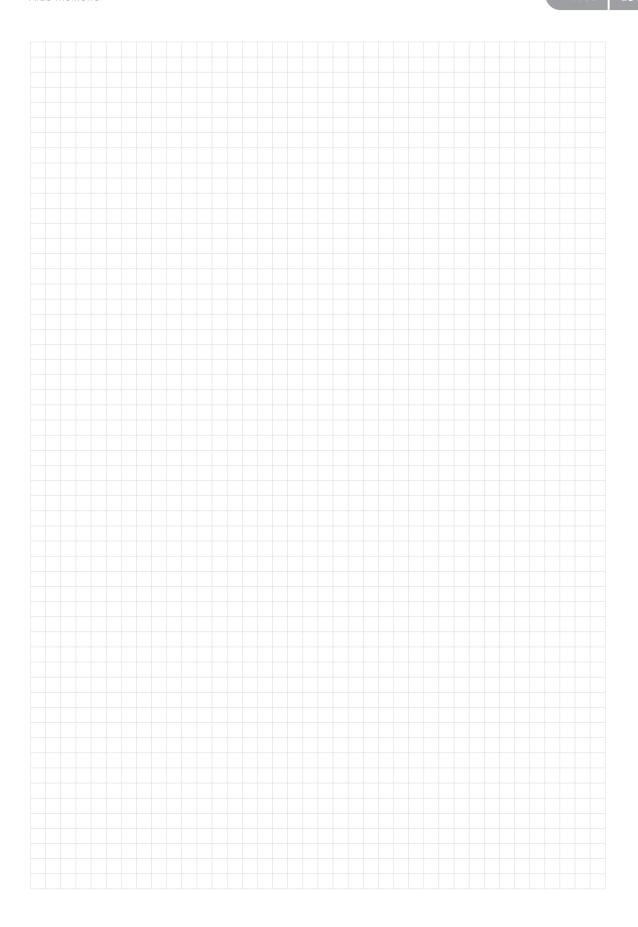

Définitions

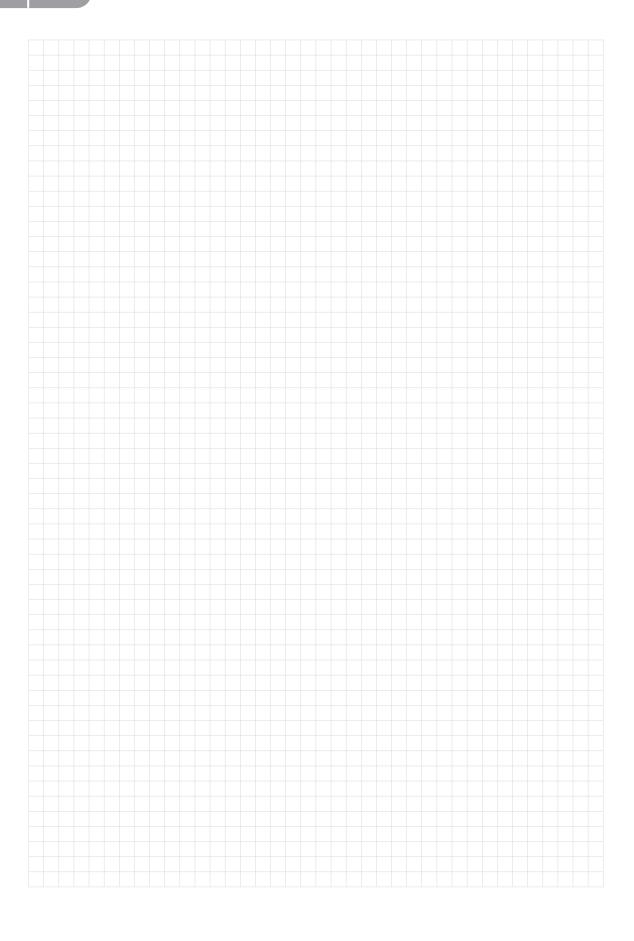
- Une sphère est l'ensemble des points de l'espace qui sont à égale distance d'un point, appelé centre.
- Cette distance est appelée le rayon de la sphère.

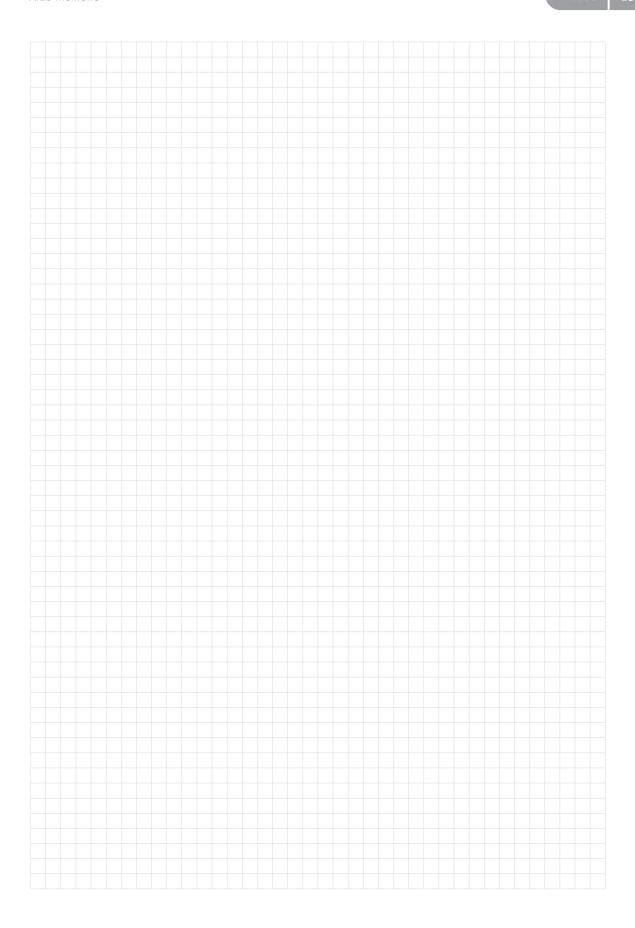
Exemple

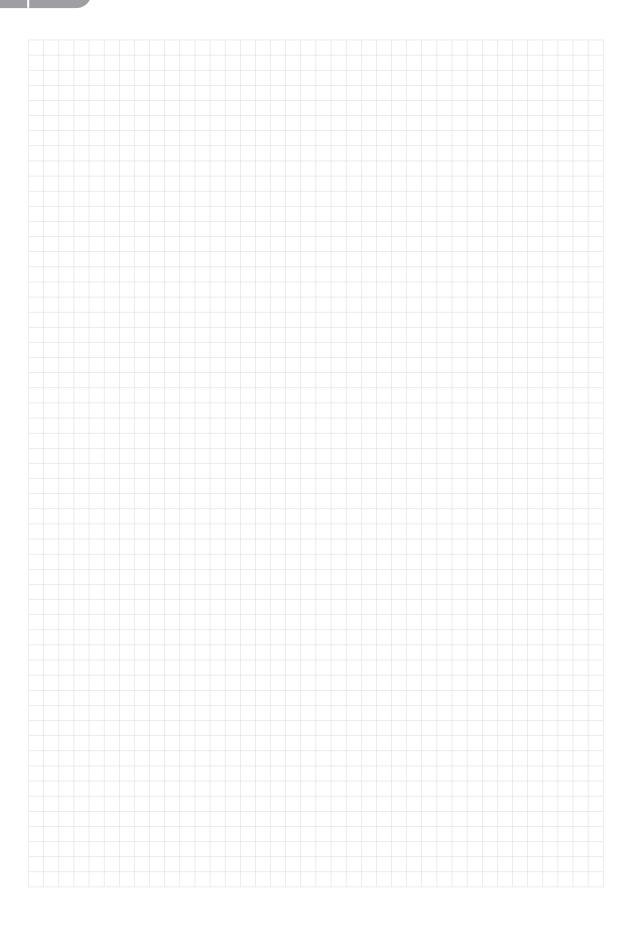
Les segments OA, OB, OC sont des rayons de la sphère, donc OA = OB = OC.

On a représenté ci-contre une sphère de centre O. Les segments AA' et BB' sont des diamètres de la sphère, donc AA' = BB'.


Définitions

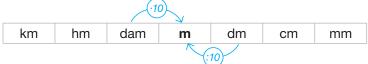

- Une boule est l'ensemble des points de l'espace délimités par une sphère.
- Le centre de la boule est le centre de la sphère.
- Le rayon de la boule est le rayon de la sphère.


Remarque


Une **boule** est donc un **solide**. La **sphère** est la **surface** qui délimite une boule.

Sphère: du grec sphaira, balle, sphère.

Grandeurs et mesures


- Unités de mesure
- Périmètre d'une surface
- Aire d'une surface
- Volume d'un solide
- **■** Théorèmes

Unités de mesure

Unités de longueur

Définitions

- Dans le système métrique, le mètre (m) est l'unité principale de mesure des longueurs.
- On utilise aussi des multiples du mètre: décamètre (dam), hectomètre (hm), kilomètre (km) ainsi que des sous-multiples: décimètre (dm), centimètre (cm), millimètre (mm).

Exemples

- 1 dm = 10 cm = 100 mm
- \circ 1 km = 1000 m ; 100 cm = 1 m ; 0,1 m = 1 dm

Remarque

Il existe d'autres unités de longueur que celles du système métrique.

Exemples

Le pouce: 2,54 cm; le pied: 0,3048 m; le mille marin: 1852 m; l'année-lumière: ~10¹³ km

--- Puissance de dix (p. 33)

Convertir les unités de longueur

Méthode 1

En utilisant les relations entre les différentes unités.

Exemple Exprimer 1528,9 m en km.

ÉTAPE

Il y a trois unités pour passer des mètres aux kilomètres (dam, hm, km). On déplace donc la virgule de trois rangs vers la gauche.

Ou

1 km = 1000 m; on divise donc 1528,9 par 1000.

1,528,9 m = 1,5289 km

Méthode 2

En utilisant un tableau de conversion.

Exemples Exprimer 1528,9 m en km, 12 mm en m et 2,5 hm en m.

ÉTAPE

Pour écrire le nombre dans le tableau, on repère la case dans laquelle on doit placer son chiffre des unités.

On place ensuite la virgule dans la case correspondant à l'unité demandée et on complète éventuellement les cases vides par des 0.

1528,9 m en km:

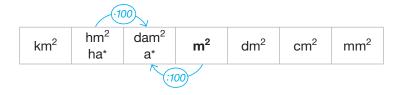
km	hm	dam	m	dm	cm	mm
1,	5	2	8	9		

1528,9 m = 1,5289 km

12 mm en m:

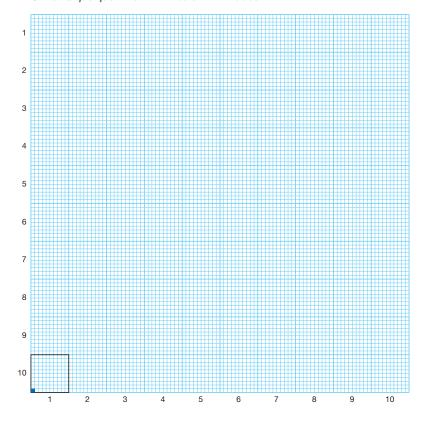
km	hm	dam	m	m dm		mm
			0,	0	1	2

12 mm = 0.012 m


2,5 hm en m:

km	hm	dam	m	dm	cm	mm
	2	5	0			
2,5 hm = 250 m						

Unités d'aire


Définitions

- Dans le système métrique, le mètre carré (m²) est l'unité principale de mesure des aires. C'est l'aire d'un carré dont le côté mesure 1 m.
- On utilise aussi des multiples du mètre carré: décamètre carré (dam²), hectomètre carré (hm²), kilomètre carré (km²) ainsi que des sous-multiples: décimètre carré (dm²), centimètre carré (cm²), millimètre carré (mm²).

Exemples

Cette feuille de papier millimétré représente 1 dm².
 On remarque que: 1 dm² = 100 cm² = 10000 mm².

 \circ 1 hm² = 1 ha = 10000 m²; 1 cm² = 100 mm²; 0,01 m² = 1 dm²

^{*} Les **ares (a)** et les **hectares (ha)** sont utilisés pour mesurer, par exemple, l'aire d'un terrain, d'une forêt, d'un champ, d'un vignoble, etc.

Convertir les unités d'aire

Méthode 1

En utilisant les relations entre les différentes unités.

Exemple Exprimer 457 cm² en m².

ÉTAPE

Il y a deux unités pour passer des centimètres carrés aux mètres carrés (dm², m²) et deux rangs par unité. On déplace donc la virgule de quatre rangs vers la gauche.

Οι

 $1 \text{ m}^2 = 10000 \text{ cm}^2$; on divise donc 457 par

 $457 \text{ cm}^2 = 0.0457.0 \text{ cm}^2 = 0.0457 \text{ m}^2$

Méthode 2

En utilisant un tableau de conversion.

an amount an abroad do conversion

ÉTAPE

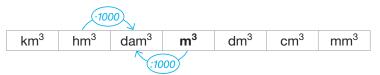
Pour écrire le nombre dans le tableau, on repère la case dans laquelle on doit placer son chiffre des unités (colonne de droite).

On place ensuite la virgule dans la case correspondant à l'unité (colonne de droite) demandée et on complète éventuellement les cases vides par des 0.

5.28 hm² en m²:

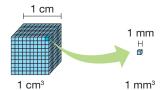
km²	hr	n ²	da	m ²	m	12	dr	n²	cn	n^2	mr	n²
		5	2	8	0	0						
$5,28 \text{ hm}^2 = 52800 \text{ m}^2$												

Exemples Exprimer 5,28 hm² et 457 cm² en m².

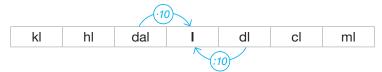

457 cm² en m²:

	TOT CIT			•									
	km ²	hr	n ²	dam ²		dam ² m ²		dr	dm ²		cm ²		n ²
ĺ							0,	0	4	5	7		
4	$457 \text{ cm}^2 = 0.0457 \text{ m}^2$												

Unités de volume et de capacité


Définitions

- Dans le système métrique, le **mètre cube (m³)** est l'unité principale de mesure des volumes. C'est le volume d'un cube dont l'arête mesure 1 m.
- On utilise aussi des multiples du mètre cube: décamètre cube (dam³), hectomètre cube (hm³), kilomètre cube (km³) ainsi que des sous-multiples: décimètre cube (dm³), centimètre cube (cm³), millimètre cube (mm³).


Exemple

Ce cube représente 1 cm 3 . On remarque que 1 cm 3 = 1000 mm 3

Définitions

- Le **litre (I)** est l'unité principale de mesure des capacités. Un litre remplit exactement un cube de 1 dm d'arête soit 1 dm³ donc 1 l = 1 dm³.
- On utilise aussi des multiples du litre: décalitre (dal), hectolitre (hl), kilolitre (kl) ainsi que des sous-multiples: décilitre (dl), centilitre (cl), millilitre (ml).

Exemples

1 hl = 100 l; 100 cl = 1 l; 0,1 l = 1 dl

Remarque

On mesure aussi le volume d'un liquide, d'un gaz, de la cylindrée d'un moteur, etc. à l'aide des unités de capacité.

Pour passer des unités de capacité aux unités de volume et vice-versa, on utilise l'égalité $1 I = 1 \text{ dm}^3$.

Exemples

 $3 m^3 = 3000 dm^3 = 3000 I$; $1876,5 cI = 18,765 I = 18,765 dm^3$

Capacité: du latin *capax*, qui peut contenir, avoir une contenance.

--- Puissance de dix (p. 33)

Convertir les unités de volume

Méthode 1

En utilisant les relations entre les différentes unités.

Exemple Exprimer 0,1234 m³ en dm³.

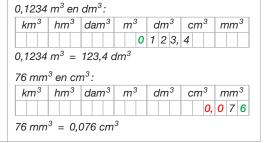
ÉTAPE

Il y a une unité pour passer du mètre cube aux décimètres cubes et trois rangs par unité. On déplace donc la virgule de trois rangs vers la droite.

Οu

1 $m^3 = 1000 \text{ dm}^3$; on multiplie donc 0,1234 par 1000.

 $0,123,4 \, \text{m}^3 = 123,4 \, \text{dm}^3$


Méthode 2 En utilisant un tableau de conversion.

Exemples Exprimer 0,1234 m³ en dm³ et 76 mm³ en cm³.

ÉTAPE

Pour écrire le nombre dans le tableau, on repère la case dans laquelle on doit placer son chiffre des unités (colonne de droite).

On place ensuite la virgule dans la case correspondant à l'unité (colonne de droite) demandée et on complète éventuellement les cases vides par des 0.

160 Grandeurs et mesures Aide-mémoire

Convertir les unités de volume en unités de capacité et inversement

Méthode

Exemple 1 Exprimer 98 cm³ en cl.

ÉTAPE 1	
Exprimer le volume en décimètres cubes.	$98 \text{ cm}^3 = 0,098 \text{ dm}^3$
ÉTAPE 2	
Appliquer l'égalité: 1 dm ³ = 1 l.	$0,098 \text{ dm}^3 = 0,098 \text{ I}$
Exprimer la capacité à l'aide de l'unité demandée.	0.098 l = 9.8 cl $98 cm^3 = 9.8 cl$

Méthode

Exemple 2 Exprimer 1876,5 hl en m³.

ÉTAPE 1	
Exprimer la capacité en litres.	1876,5 hl = 187650 l
ÉTAPE 2	
Appliquer l'égalité: 1 l = 1 dm ³ .	$187650 I = 187650 dm^3$
Exprimer le volume à l'aide de l'unité demandée.	187650 dm ³ = 187,65 m ³ 1876,5 hl = 187,65 m ³

Unités de masse

Définitions

- Le gramme (g) est l'unité principale de mesure des masses.
- On utilise aussi des multiples du gramme: décagramme (dag), hectogramme (hg), kilogramme (kg) ainsi des sous-multiples: décigramme (dg), centigramme (cg), milligramme (mg).
- On utilise aussi le quintal (q) et la tonne (t).

$$1 q = 100 kg ; 1 t = 1000 kg.$$

Exemples

1 kg = 1000 g; 1000 mg = 1 g; 0.01 g = 1 cg

O Unités de temps

Définitions

- La seconde (s) est l'unité principale de la mesure du temps.
- Les principaux sous-multiples sont: le dixième de seconde, le centième de seconde, le millième de seconde.
- On utilise aussi les unités suivantes: la minute (min), l'heure (h), le jour, le mois, l'année, le siècle, le millénaire.

```
1 minute = 60 secondes; 1 heure = 60 minutes; 1 jour = 24 heures; 1 année = 12 mois = 365 jours ou 366 jours (année bissextile).
```

Remarques

- Les heures, minutes et secondes sont des unités qui correspondent au système sexagésimal (système de numération en base soixante):
 1 heure = 60 minutes = 3600 secondes.
- Les dixièmes de seconde, centièmes de seconde et millièmes de seconde sont des sous-multiples qui correspondent au système décimal (système de numération en base dix):
 - 1 seconde = 10 dixièmes de seconde = 100 centièmes de seconde = 1000 millièmes de seconde.
- Dans les calculs commerciaux, en Suisse: 1 année = 12 mois = 360 jours;
 1 mois = 30 jours.

Convertir les unités de temps

Méthode

Convertir un nombre décimal d'heures en heures, minutes et secondes.

Exemple Convertir 5,84 h en h min s.

Décomposer le nombre d'heures en la somme de sa partie entière et de sa partie décimale.	5,84 h = 5 h + 0,84 h
Exprimer en minutes la partie décimale en la multipliant par 60.	0,84 h = 0,84 · 60 min = 50,4 min
Décomposer le nombre de minutes en la somme de sa partie entière et de sa partie décimale.	50,4 min = 50 min + 0,4 min
Exprimer en secondes la partie décimale en la multipliant par 60.	$0.4 min = 0.4 \cdot 60 s = 24 s$
Conclure.	5,84 h = 5 h 50 min 24 s

Méthode 1

Convertir un nombre en secondes en heures, minutes et secondes.

Exemple Convertir 6023 s en h min s.

ÉTAPE 1	
Convertir les secondes en minutes à l'aide d'une division euclidienne par 60.	6023:60 = 100 r 23 donc 6023 s = 100 min 23 s
ÉTAPE 2	
Convertir 100 minutes en heures à l'aide d'une division euclidienne par 60.	100:60 = 1 r 40 donc 100 min = 1 h 40 min
ETAPE 3 Compléter l'égalité à l'aide des résultats trouvés.	6023 s = 1 h 40 min 23 s

Méthode 2

Convertir un nombre en secondes en heures, minutes et secondes.

Exemple Convertir 24327 s en h min s.

ÉTAPE 1	
Exprimer la durée en heures en le divisant par 3600.	24327:3600 = 6,7575 donc 24327 s = 6,7575 h
ÉTAPE 2	
Exprimer 0,7575 h en minutes et secondes selon l'exemple précédent.	$0,7575 h = 45 \min 27 s$
ÉTAPE 3	
Noter l'égalité obtenue.	24327 s = 6 h 45 min 27 s

Méthode 1

Convertir des heures, minutes et secondes en heures décimales en utilisant des fractions.

Exemple Exprimer 4 h 12 min en heure décimale.

EXPRIME les minutes en fraction d'heure.	$12 \min = \frac{12}{60} h$
Passer de l'écriture fractionnaire à l'écriture décimale.	$\frac{12}{60}h = 0.2h$
Additionner les heures.	4 h + 0,2 h = 4,2 h
Noter l'égalité obtenue.	4 h 12 min = 4,2 h

GM

Méthode 2

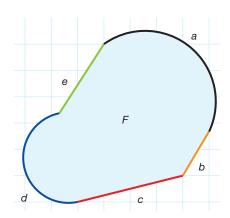
Convertir des heures, minutes et secondes en heures décimales en utilisant un tableau de proportionnalité.

Exemple Exprimer 4 h 12 min en heure décimale.

ÉTAPE 1				
Poser un tableau de proportionnalité.	Minutes	60	12	
	Heures	1	Х	
ÉTAPE 2				
Calculer la valeur manquante.	x = 0.2			
ÉTAPE 3				
Additionner les heures.	4 h + 0.2 h =	4,2 h		
ÉTAPE 4				
Noter l'égalité obtenue.	4 h 12 min =	4.2 h		
3		,		

Périmètre d'une surface

Généralités

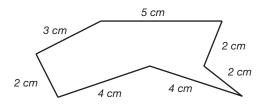

Définition

Le périmètre d'une figure géométrique fermée est la longueur de la ligne qui entoure cette figure.

Exemple

Le périmètre p de la figure F est égal à la longueur de la ligne qui entoure la surface bleue. Il peut s'obtenir en additionnant les longueurs des différentes parties qui le constituent.

$$p = a + b + c + d + e$$


Conséquence Le périmètre d'un polygone est la somme des longueurs des côtés du polygone.

Exemple

Le périmètre du polygone ci-dessous est, en centimètres :

$$5 + 2 + 2 + 4 + 4 + 2 + 3 = 22$$

$$p = 22 cm$$

GM

Remarque Ces longueurs doivent être exprimées dans la même unité.

Périmètre: du grec *perimetros: peri*, autour et *metros*, mesure.

--- Polygone (p. 110)

Périmètre des surfaces usuelles

Perimetre des surface		
Figure	Formule de périmètre 1	Exemple
c: mesure du côté	p = c + c + c + c $p = 4c$ Remarque Cette formule est aussi valable pour calculer le périmètre du losange.	$p = 4 \cdot 3.5 = 14$
Rectangle	$p = L + \ell + L + \ell$ $p = 2(L + \ell)$	3 = 7
L: mesure de la longueur є: mesure de la largeur		$p = 2 \cdot (7 + 3) = 20$
■ Cercle	$p = \pi \cdot d$ ou $p = 2 \cdot \pi \cdot r$ $\pi = 3,141592 \approx 3,14$	9
d: diamètre du cercle r: rayon du cercle	Remarque On parle aussi de la longueur ou de la circonférence d'un cercle.	$p = 9 \cdot \pi \cong 28,27$
■ Arc de cercle AB: arc de cercle r: rayon du cercle α: angle au centre mesuré en degrés	$\widehat{AB} = 2 \cdot \pi \cdot r \cdot \frac{\alpha}{360}$	$\widehat{AB} = 2 \cdot \pi \cdot 5 \cdot \frac{75}{360} \cong 6,54$

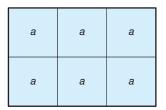
¹ Toutes les longueurs sont exprimées dans la même unité.

Grandeurs et mesures

Aire d'une surface

Généralités

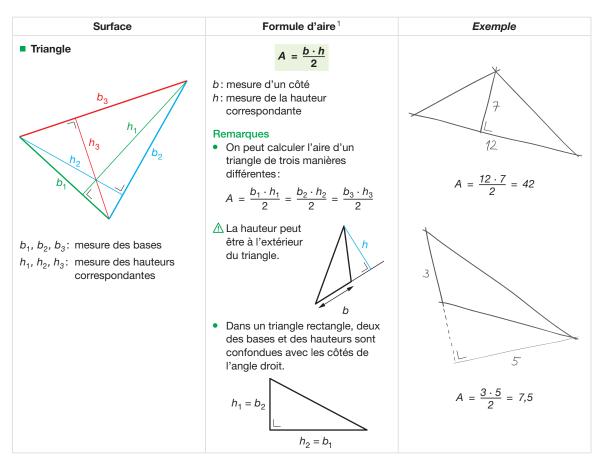
Définition


Pour mesurer une aire, on utilise une surface unité. La mesure de l'aire d'une surface est le nombre de surfaces unité nécessaire pour la recouvrir.

Exemple

Si le carré a représente l'unité de mesure, l'aire de la surface rectangulaire vaut 6 a.

unité: a



aire du rectangle: 6 a

Remarque

L'unité d'aire principale du système métrique est le mètre carré, noté m². C'est l'aire d'un carré d'un mètre de côté.

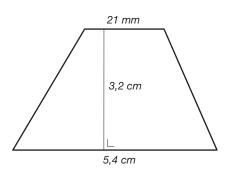
Aire des surfaces usuelles

¹ Toutes les longueurs sont exprimées dans la même unité.

GM

Surface Formule d'aire 1 Exemple Carré $A = c \cdot c$ С $A = c^2$ С Remarque Comme le carré est un losange, on peut aussi calculer son aire à l'aide c: mesure du côté de la formule du losange. $A=3^2=9$ Rectangle $A = L \cdot \ell$ L: mesure de la longueur ℓ: mesure de la largeur $A = 8 \cdot 3 = 24$ Parallélogramme $A = b \cdot h$ b: mesure d'un côté h: mesure de la hauteur correspondante Remarque On peut calculer l'aire d'un parallélogramme de deux manières: $A = b_1 \cdot h_1 = b_2 \cdot h_2$ ▲ La hauteur peut être à l'extérieur b_1 du parallélogramme. b_1 , b_2 : mesure des bases h_1, h_2 : mesure des hauteurs correspondantes $A = 10 \cdot 6 = 60$ Losange Remarque Comme le losange est un parallélogramme, on peut aussi D: mesure de la grande diagonale calculer son aire à l'aide de la formule $A = \frac{8 \cdot 6}{2} = 24$ d: mesure de la petite diagonale du parallélogramme.

¹ Toutes les longueurs sont exprimées dans la même unité.


Surface	Formule d'aire ¹	Exemple
B: mesure de la grande base b: mesure de la petite base h: mesure de la hauteur	$A = \frac{B+b}{2} \cdot h$	$A = \frac{12+5}{2} \cdot 4 = 8,5 \cdot 4 = 34$
■ Disque r: rayon du disque $\pi = 3,14159$	$A = \pi \cdot r^2$	$A = \pi \cdot 5^2 = 25\pi \cong 78,54$
• Secteur circulaire r : rayon du disque α : angle du secteur $\pi = 3,14159$	$A = \pi \cdot r^2 \cdot \frac{\alpha}{360}$	$A = \pi \cdot 6^2 \cdot \frac{50}{360} = 5\pi \approx 15,71$
■ Sphère r: rayon de la sphère	$A = 4 \cdot \pi \cdot r^2$	$A = 4 \cdot \pi \cdot 7^2 = 196\pi \cong 615,75$

¹ Toutes les longueurs sont exprimées dans la même unité.

Calculer l'aire d'une figure

Méthode 1 A l'aide d'une formule lorsqu'il s'agit d'une figure usuelle.

Exemple Calculer l'aire de ce trapèze.

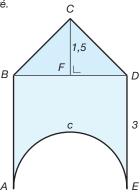
$$A_{\text{trapèze}} = \frac{B+b}{2} \cdot h$$

$$B = 5,4 cm$$

$$b = 21 \, mm = 2,1 \, cm$$

$$h = 3.2 cm$$

$$A_{trapèze}$$
 en cm² = $\frac{5,4+2,1}{2} \cdot 3,2 = 12$


Méthode 2 Par décomposition puis addition et/ou soustraction d'aires de figures usuelles.

Exemple Calculer l'aire de la figure

bleue ci-dessous.

Unité: mètre c est un demi-cercle.

ABDE est un carré.

ÉTAPE

On décompose la figure bleue en sousfigures dont on peut calculer l'aire, puis on additionne et/ou soustrait l'aire de ces sous-figures.

$$A_{bleue} = A_{carr\'e} - A_{demi-disque} + A_{triangle}$$

Rayon du demi-disque:
$$\frac{AB}{2} = 1,5 \text{ m}$$

Base du triangle: BD = 3 m

Hauteur du triangle: CF = 1,5 m

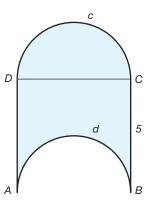
$$A_{carr\acute{e}}$$
 en $m^2 = 3^2$

$$A_{\text{demi-disque}} \text{ en } m^2 = \frac{\pi \cdot 1,5^2}{2}$$

$$A_{triangle}$$
 en $m^2 = \frac{3 \cdot 1,5}{2}$

A_{carré} err
$$m^2 = 3$$

$$A_{demi-disque} \text{ en } m^2 = \frac{\pi \cdot 1,5^2}{2}$$


$$A_{triangle} \text{ en } m^2 = \frac{3 \cdot 1,5^2}{2}$$

$$A_{bleue} \text{ en } m^2 = 3^2 - \frac{\pi \cdot 1,5^2}{2} + \frac{3 \cdot 1,5^2}{2} \cong 39,76 \text{ } m^2$$

Méthode 3

Par décomposition et déplacement.

Exemple Calculer l'aire de la figure bleue ci-dessous. ABCD est un carré de 5 dm de côté. c et d sont des demi-disques.

ÉTAPE

On déplace une partie de la figure de façon à obtenir une figure dont on peut calculer l'aira

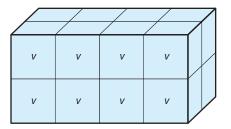
Les demi-disques c et d ont le même diamètre donc la même aire. Je peux déplacer mentalement le demi-disque c pour le mettre dans le «trou» que représente le demi-disque d.

L'aire de la figure est donc égale à celle du carré ABCD.

Côté du carré: AB = 5 dm

 $A_{bleue} en dm^2 = 5^2 = 25$

Volume d'un solide


Généralités

Définition

Pour mesurer le volume d'un solide, on utilise un solide unité. La mesure du volume de ce solide est le nombre de solides unités nécessaires pour le remplir.

Exemple

Si le cube v représente l'unité de mesure, le volume du parallélépipède rectangle vaut 16 v.

unité: v

volume du parallélépipède rectangle: 16v

Remarque

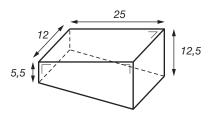
L'unité principale de volume du système métrique est le mètre cube, noté m³. C'est le volume d'un cube de 1 m d'arête.

Volume des solides usuels

Solide	Formule de volume ¹	Exemple
■ Cube	Torrido de Volume	Zxompic
a: mesure de l'arête	$V = a \cdot a \cdot a$ $V = a^3$	Cube $V = 4^3 = 64$
■ Parallélépipède rectangle		
ou pavé droit a a, b et c: mesure des différentes arêtes	$V = a \cdot b \cdot c$	Pavé droit $V = 4 \cdot 5 \cdot 7 = 140$
		1
Prisme droit A _b : aire de la base h: mesure de la hauteur	$V = A_b \cdot h$ Remarque Cette formule est valable pour le cube et le pavé droit qui sont eux aussi des prismes droits.	Prisme droit $V = \frac{4 \cdot 6}{2} \cdot 10 = 120$
■ Pyramide		A
Ab	$V = \frac{A_b \cdot h}{3}$	7
A_b: aire de la baseh: mesure de la hauteur		Pyramide à base rectangulaire $V = \frac{(5 \cdot 4) \cdot 7}{3} = 46,\overline{6}$

¹ Toutes les longueurs sont exprimées dans la même unité.

Solide	Formule de volume ¹	Exemple
r: rayon de la base A _b : aire de la base h: mesure de la hauteur	$V = A_b \cdot h$ $V = \pi \cdot r^2 \cdot h$	Cylindre $V = \pi \cdot 1,5^2 \cdot 4 \cong 28,27$
r: rayon de la base A _b : aire de la base h: mesure de la hauteur	$V = \frac{A_b \cdot h}{3}$ $V = \frac{\pi \cdot r^2 \cdot h}{3}$	Cône $V = \frac{\pi \cdot 3^2 \cdot 6}{3} \cong 56,55$
■ Boule r: rayon de la boule	$V = \frac{4 \cdot \pi \cdot r^3}{3}$	Boule $V = \frac{4 \cdot \pi \cdot 5^3}{3} \approx 523.6$


¹ Toutes les longueurs sont exprimées dans la même unité.

Calculer le volume d'un solide

Méthode 1 A l'aide d'une formule lorsqu'il s'agit d'un solide usuel.

Exemple Calculer le volume de ce prisme droit. unité: dm

ÉTAPE

On reconnaît le solide usuel et on applique la formule qui permet de calculer son volume. Il s'agit d'un prisme droit dont la base est un trapèze rectangle.

$$V = A_b \cdot h$$

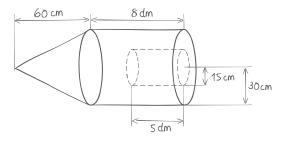
h = hauteur du prisme

$$A_b = \frac{B+b}{2} \cdot h_t$$

 $h_t = hauteur du trapèze$

$$B = 12,5 \, dm$$

$$b = 5,5 dm$$


$$h_t = 25 \, dm$$

$$h = 12 dm$$

$$V_{prisme\ droit}\ en\ dm^3 = \frac{12,5+5,5}{2} \cdot 25 \cdot 12 = 2700$$

Méthode 2 Par décomposition puis addition et/ou soustraction.

Exemple Calculer le volume de ce solide.

CM

ÉTAPE

On décompose le solide en soussolides dont on peut calculer le volume, puis on additionne et/ou soustrait le volume de ces figures.

$$V_{\text{solide}} = V_{\text{grand cylindre}} - V_{\text{petit cylindre}} + V_{\text{cône}}$$

$$r_{grand\ cylindre} = 30\ cm = 3\ dm$$

$$r_{petit \ cylindre} = 15 \ cm = 1,5 \ dm$$

$$h_{grand\ cylindre} = 8\ dm$$

$$h_{petit\ cylindre} = 5\ dm$$

$$h_{c\hat{o}ne} = 60 \text{ cm} = 6 \text{ dm}$$

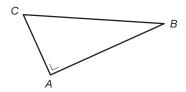
$$V_{grand\ cylindre}\ en\ dm^3=\pi\cdot 3^2\cdot 8$$

$$V_{petit\ cylindre}$$
 en dm³ = $\pi \cdot 1,5^2 \cdot 5$

$$V_{\text{cône}}$$
 en dm³ = $\frac{\pi \cdot 3^2 \cdot 6}{3}$

$$V_{\text{solide}} \text{ en } dm^3 = \pi \cdot 3^2 \cdot 8 - \pi \cdot 1,5^2 \cdot 5 + \frac{\pi \cdot 3^2 \cdot 6}{3} \cong 247,4$$

Théorèmes

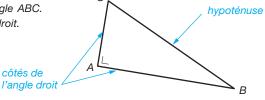

Triangle rectangle et vocabulaire

Définition

On dit qu'un triangle est rectangle en *A* si l'angle droit de ce triangle se trouve au sommet *A*.

Exemple

ABC est un triangle rectangle en A.

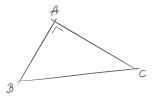

Notation

Dans un triangle rectangle, l'**hypoténuse** est le côté opposé à l'angle droit. C'est le plus grand côté de ce triangle.

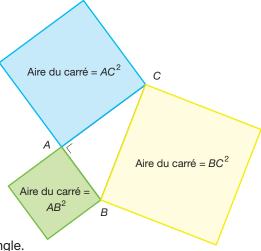
Les deux autres côtés sont appelés les côtés de l'angle droit (ou cathètes).

Exemple

Le côté BC est l'hypoténuse du triangle rectangle ABC. Les côtés AC et AB sont les côtés de l'angle droit.


■ Théorème de Pythagore

Théorème

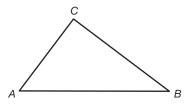

Si un triangle est rectangle, alors la somme des carrés des côtés de l'angle droit est égale au carré de l'hypoténuse.

Exemple

Le triangle ABC est rectangle en A, donc: $AB^2 + AC^2 = BC^2$.

Conséquence Aire_{carré jaune} = Aire_{carré bleu} + Aire_{carré vert}

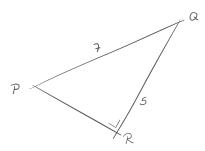
Le théorème de Pythagore ne peut s'utiliser que dans un triangle rectangle.


La réciproque du théorème de Pythagore

Théorème

Si, dans un triangle, le carré du plus grand côté est égal à la somme des carrés des deux autres côtés, alors ce triangle est rectangle.

Exemple


Si $AC^2 + BC^2 = AB^2$, alors le triangle ABC est rectangle en C.

Calculer la longueur d'un segment en utilisant le théorème de Pythagore

Méthode

Exemple Calculer la longueur exacte de PR. Les mesures sont exprimées dans la même unité.

S'assurer qu'on a bien les conditions d'utilisation du théorème de Pythagore: Le triangle est rectangle. On connaît les longueurs de deux côtés de ce triangle.	Le triangle PQR est rectangle en R. On connaît la longueur des côtés PQ et QR.
Ecrire la relation de Pythagore.	D'après le théorème de Pythagore, on a: $PR^2 + QR^2 = PQ^2$
Remplacer les longueurs connues par leurs valeurs et calculer la longueur cherchée.	$PR^{2} + 5^{2} = 7^{2}$ $PR^{2} + 25 = 49$ $PR^{2} = 49 - 25$ $PR^{2} = 24$, donc $PR = \sqrt{24} \approx 4$,9

_

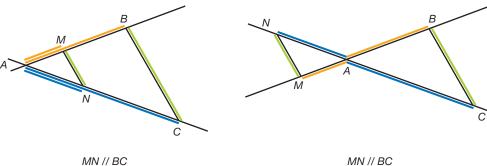
On peut vérifier le résultat en s'assurant que l'hypoténuse est bien le plus grand côté du triangle rectangle. Dans le cas ci-dessus, 7 est effectivement plus grand que 5 et 4,9.

Prouver qu'un triangle est rectangle en utilisant la réciproque du théorème de Pythagore

Méthode

Exemple Soit EFG un triangle tel que EF = 12 cm, EG = 13 cm et FG = 5 cm. Ce triangle est-il rectangle?

Identifier le plus grand côté.	EG est le plus grand côté.
Calculer le carré du plus grand côté. Calculer la somme des carrés des deux autres côtés.	$EG^2 = 13^2 = 169$ $EF^2 + FG^2 = 12^2 + 5^2 = 144 + 25 = 169$
Regarder si l'égalité est vérifiée. Si c'est le cas, le triangle est rectangle; sinon, il ne l'est pas.	EG ² = EF ² + FG ² Donc, d'après la réciproque du théorème de Pythagore, le triangle EFG est rectangle en F.


Théorème de Thalès

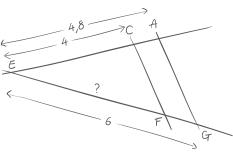
Théorème

Soit deux droites AB et AC sécantes et deux points M et N qui appartiennent respectivement à la droite AB et à la droite AC.

Si les droites MN et BC sont parallèles, alors les triangles ABC et AMN ont des côtés respectivement proportionnels. Ils sont semblables.

Il y a deux configurations correspondant à ce théorème.

 $\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$


donc les triangles ABC et AMN sont semblables.

Les triangles ABC et AMN sont images l'un de l'autre par une homothétie Remarque de centre A et de rapport $\frac{AM}{AB}$ ou $\frac{AB}{AM}$.

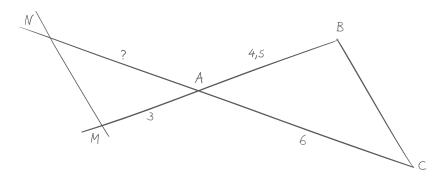
--- Homothétie (p. 138)

Calculer la longueur d'un segment en utilisant le théorème de Thalès

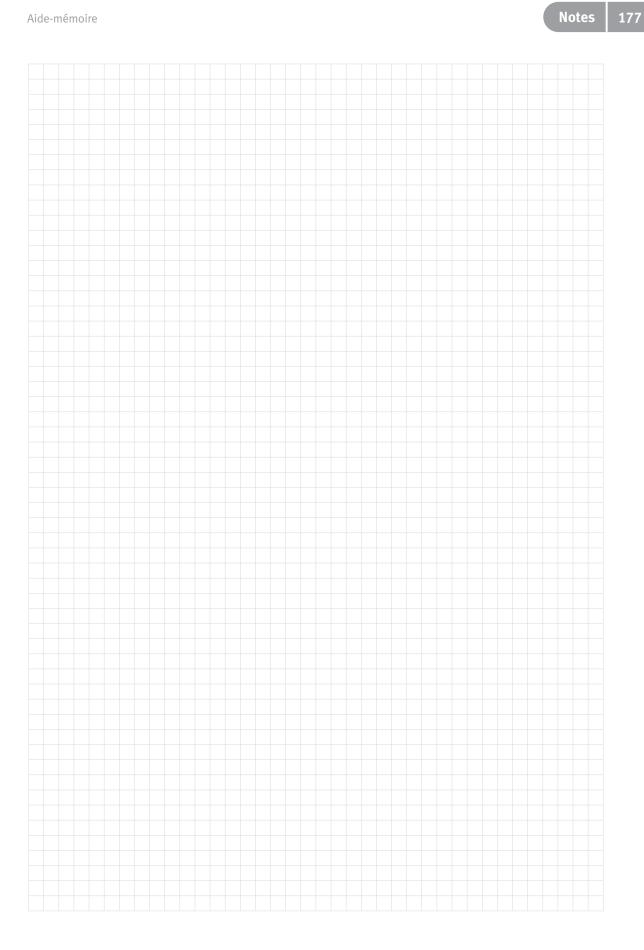
Méthode

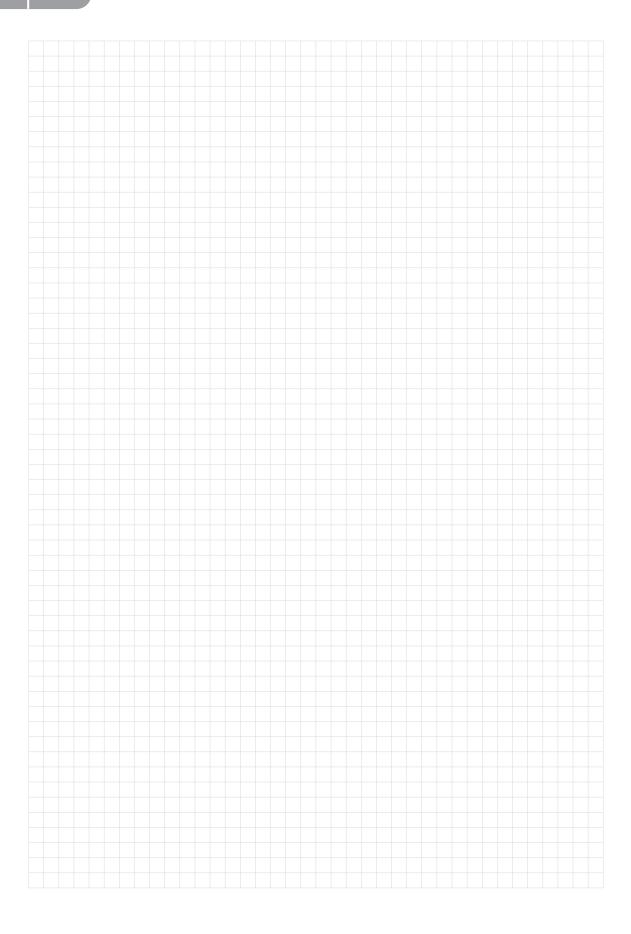
Exemple 1 Calculer la longueur EF sachant que CF est parallèle à AG.

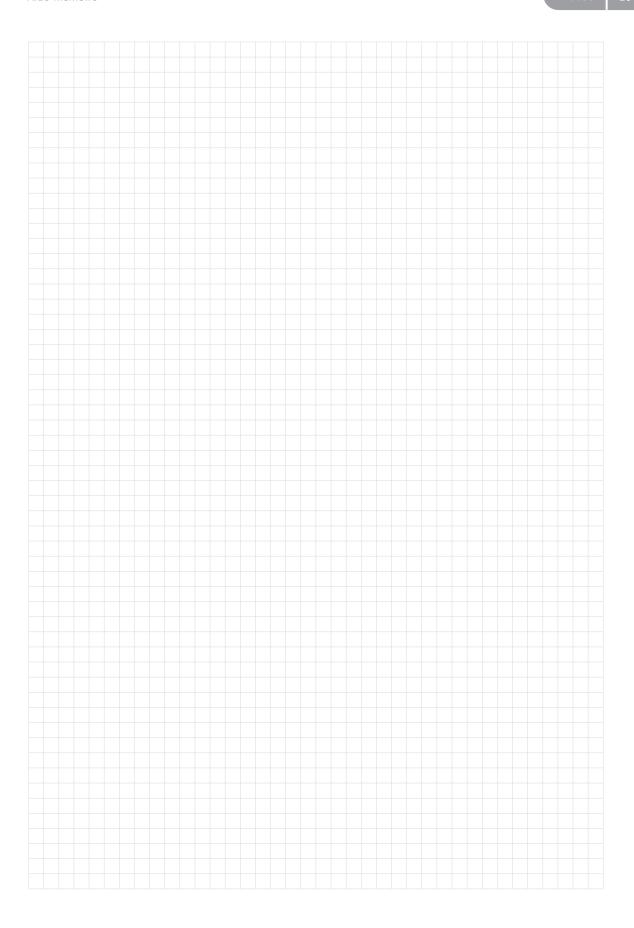
Les longueurs sont exprimées dans la même

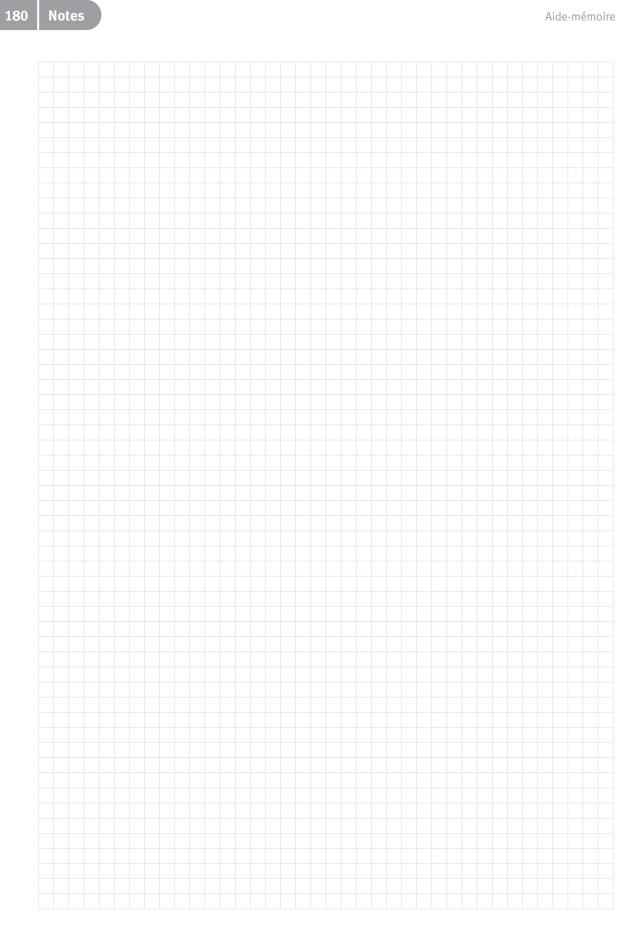

S'assurer qu'on a bien les conditions d'utilisation du théorème de Thalès.	Les droites CF et AG sont parallèles et elles coupent les sécantes EA et EG.
Ecrire les rapports égaux en utilisant le théorème de Thalès.	$\frac{EC}{EA} = \frac{EF}{EG}$
Remplacer les longueurs connues par leurs valeurs et calculer la longueur cherchée.	$\frac{4}{4,8} = \frac{EF}{6}$
	$4,8 \cdot EF = 24$
	$4,8 \cdot EF = 4 \cdot 6$

Méthode


Exemple 2 Calculer la longueur AN.


BC // MN


Les longueurs sont exprimées dans la même unité.



Les droites BC et MN sont parallèles et elles coupent les sécantes AB et AC.
$\frac{AB}{AM} = \frac{AC}{AN}$
$\frac{4.5}{3} = \frac{6}{AN}$ $4.5 \cdot AN = 3 \cdot 6$ $4.5 \cdot AN = 18$

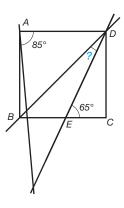
Recherche et stratégies

- Problèmes et résolutions
- Stratégies de recherche
- Vérification
- Preuve

Problèmes et résolutions

Problème

Définition


Toute activité pour laquelle il n'y a pas de procédure immédiate de résolution est un problème.

Exemples

- o Quel est le chiffre des unités de 7²⁰¹?
- Dans le carré ABCD, on voudrait connaître l'angle marqué d'un point d'interrogation.

Problème: du grec problêma, ce qu'on a devant soi, obstacle, tâche, sujet de controverse, problème.

---- Etapes de résolution d'un problème (p. 182)

Etapes de résolution d'un problème

Etape 1

S'approprier l'énoncé

- Lire attentivement et complètement l'énoncé du problème afin de se mettre en situation, de donner du sens au texte et de s'en construire une représentation.
- Trier les informations (ce qu'on connaît, ce qu'on doit chercher, etc.).
- Représenter les informations, si cela est utile, sous forme de croquis, tableau, schéma, etc., pour visualiser la situation.
- Décrire clairement le but à atteindre.

Etape 2

Elaborer une solution

- Choisir une ou des stratégies de recherche afin d'élaborer les étapes de résolution.
- Exécuter ces étapes en contrôlant régulièrement la pertinence des résultats intermédiaires.
- Vérifier le résultat final et, lorsque c'est demandé, le prouver.

Etape 3

Communiquer les étapes de la résolution et le résultat

Mettre en forme les résultats pour que quiconque puisse comprendre le travail effectué. A cette fin, utiliser les termes propres au langage mathématique ainsi qu'une représentation et une notation adaptées et correctes.

Remarque

Dans le cadre d'une **narration de recherche**, on rédige un compterendu complet de la recherche, dans lequel on décrit:

- le but à atteindre:
- les conjectures émises;
- les pistes explorées et ce qui a conduit à les garder ou à les rejeter;
- la ou les solution(s) trouvée(s);
- les propriétés utilisées;
- les calculs effectués;
- etc.

Stratégies de recherche

Définition

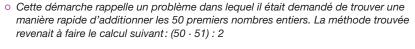
Ensemble d'actions que l'on coordonne dans l'objectif de trouver et de planifier les étapes de la résolution d'un problème.

Remarques

- De très nombreuses stratégies de recherche existent en mathématiques comme dans les sciences de façon générale.
 Certaines seront présentées dans les pages suivantes.
- Chacune peut être utilisée seule, mais plusieurs d'entre elles peuvent être associées.

ETTM Stratégie: du grec strategia, commandement d'une armée, d'où aptitude à commander une armée, qualités d'un général et manœuvre ou ruse de guerre.

Analogie


Définition

Stratégie consistant à repérer une ressemblance entre le problème posé et un autre problème déjà résolu qui facilitera l'élaboration d'une solution.

Exemple

Déterminer le nombre de cubes nécessaires à la construction d'un escalier simple de 100 marches de hauteur.

 On commence à faire des essais et à les organiser.
 On se rend compte qu'il s'agit de faire la somme de nombres entiers consécutifs en commençant par 1, donc à additionner 1 + 2 + 3 + 4 ...

- Cette manière de faire pouvant se généraliser pour n'importe quelle somme des n premiers nombres entiers, on utilise alors cette méthode pour résoudre le problème de l'escalier en effectuant le calcul (100 · 101) : 2 = 5050, qui donne directement le nombre de cubes nécessaires à la construction d'un escalier simple de 100 marches de hauteur.
- --- Stratégie (p. 183)

Définition

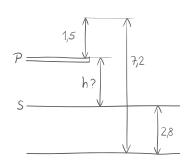
Créer une représentation simplifiée d'un problème (schéma, croquis, tableau, graphique, simulation, etc.) afin de le comprendre et d'élaborer une solution.

Exemple

Le tableau utilisé dans la résolution du problème «Poignées de main» (cf. p. 188) est une modélisation de la situation proposée.

Définition

Un **schéma**, un **croquis** est un dessin fait à main levée, sans recherche de détails.

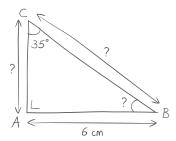

Il ne respecte pas nécessairement les mesures, mais contient des informations (cotes, symboles, explications complémentaires) qui permettent de représenter la situation et qui constitue un support à la résolution du problème.

Exemple 1

Pour effectuer une figure acrobatique, Léo saute du plongeoir de la piscine municipale. Il s'élève de 1,5 m en l'air, puis descend de 7,2 m et remonte de 2,8 m pour atteindre la surface de l'eau. A quelle hauteur au-dessus de l'eau se trouve le plongeoir?

A partir de cet énoncé, on peut construire le schéma cicontre, qui nous aide à trouver les étapes de résolution.

Solution: h en m = 7,2-2,8-1,5 = 2,9



Exemple 2

Trace un triangle ABC rectangle en A tel que AB = 6 cm et $\widehat{ACB} = 35^{\circ}$.

A partir de cet énoncé, on peut construire le schéma ci-dessous, qui nous aide à trouver les étapes de résolution du problème.

- o Calcul de l'angle ÂBC;
- o Identification des étapes de construction.

Tâtonnement réfléchi

Définition

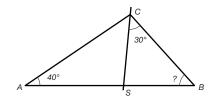
Stratégie consistant à rechercher la solution d'un problème en faisant différents essais en tenant compte chaque fois des résultats des essais précédents. Le premier essai ne se fait pas totalement au hasard, mais en prenant en compte les données du problème.

Exemple

Léa et Lucas collectionnent les images de leurs footballeurs préférés. Ils ont au total 134 images. Léa a 20 photos de plus que Lucas. Combien Lucas a-t-il d'images?

Pour résoudre ce problème, on peut procéder en utilisant le tâtonnement réfléchi.

Essais	Nombre d'images de Lucas	Nombre d'images de Léa (Léa a 20 images de plus que Lucas)	Total	Conclusion
1 ^{er} essai	50	70	120	Il faut augmenter le nombre d'images de Lucas.
2 ^e essai	70	90	160	Il faut diminuer le nombre d'images de Lucas.
3 ^e essai	60	80	140	Il faut diminuer le nombre d'images de Lucas.
4 ^e essai	57	77	134	Lucas a 57 images.


Chaînage avant

Définition

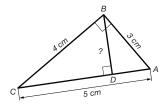
Stratégie consistant à regarder toutes les conséquences que l'on peut tirer des données du problème, ce que l'on peut en déduire ou calculer directement.

Exemple

Quelle est la valeur de l'angle \widehat{ABC} , sachant que $\widehat{CAB} = 40^{\circ}$, $\widehat{BCS} = 30^{\circ}$ et que la droite CS est la bissectrice de \widehat{ACB} ?

ÉTAPE 1	
Que puis-je calculer directement avec la donnée de ce problème?	Je peux déterminer l'angle \widehat{ACS} : la droite CS étant la bissectrice de l'angle \widehat{ACB} , \widehat{ACS} = 30°.
Maintenant que j'ai calculé cela, que puis-je calculer d'autre?	Maintenant, je peux calculer l'angle \widehat{ACB} : $\widehat{ACB} = \widehat{ACS} + \widehat{BCS} = 30^{\circ} + 30^{\circ} = 60^{\circ}.$
Que puis-je encore calculer avec ce que je viens de trouver?	Dans le triangle ABC, je peux maintenant calculer l'angle \widehat{ABC} : $\widehat{ABC} = 180^{\circ} - (\widehat{CAB} + \widehat{ACB}) = 180^{\circ} - (40^{\circ} + 60^{\circ}) = 80^{\circ}$
Je peux noter la solution.	Je peux conclure que l'angle \widehat{ABC} mesure 80°.

Chaînage arrière


Définition

Stratégie consistant à partir du but à atteindre pour identifier:

- ce qu'il faudrait connaître pour atteindre le but;
- les outils mathématiques ou logiques à mobiliser pour déterminer ce qui manque (définitions, propriétés, théorèmes, formules, règles, équations, représentations, etc.).

Exemple

Détermine la longueur du segment BD.

Je fais la liste des méthodes que je connais pour calculer une longueur.	Théorème de Pythagore, de Thalès, formules de calcul de périmètre et d'aire d'un triangle, etc.
Je sélectionne une de ces méthodes en fonction de leurs conditions d'utilisation et des données à disposition.	Le théorème de Thalès ne semble pas utilisable, car dans la figure on ne trouve pas l'une des conditions de ce théorème (la présence de droites parallèles).
	Par contre, on peut utiliser la formule de l'aire d'un triangle, car ici on peut calculer l'aire du triangle ABC de deux façons différentes.

ÉTAPE 3	
J'applique la méthode choisie et je conclus.	ABC est un triangle rectangle en B dont l'aire en cm² est: $A_{ABC} = BA \cdot \frac{BC}{2} = 4 \cdot \frac{3}{2} = 6.$ (Les côtés BA et BC sont respectivement la base et la hauteur, \widehat{ABC} étant un angle droit.)
	Dans le triangle ABC, BD est la hauteur issue de B, donc: $A_{ABC} = BD \cdot \frac{5}{2} = BD \cdot 2,5 \text{or} A_{ABC} = 6$ $BD \cdot 2,5 = 6, \ \text{donc} \ BD = \frac{6}{2,5} = 2,4.$ Donc BD mesure 2,4 cm.

Etude systématique de cas

Définition

Stratégie consistant, dans les situations pour lesquelles on sait qu'il existe un nombre restreint de possibilités de solutions, à étudier tous les cas possibles et à chercher à déterminer la ou lesquelles satisfont aux contraintes du problème.

Exemple

Un facteur donne son courrier à un professeur de maths. Il discute de la pluie et du beau temps, puis le professeur propose un petit problème au facteur:

«J'ai trois filles qui ont leur anniversaire le même mois. La somme de leurs âges est égale au numéro que l'on aperçoit sur la maison d'en face. Le produit de leurs âges est égal à 36. Quel est l'âge de chacune de mes filles?»

Le facteur répond : « Il me manque une information pour pouvoir répondre. »

Le professeur : « Vous avez raison, la voici : mon aînée n'a pas de sœur jumelle... »

Et le facteur lui donne l'âge de ses filles.

Au fait, quel est l'âge de chacune de ses filles?

 Les nombres à disposition ainsi que les informations proposées ne permettent pas de trouver directement ces âges. L'âge de chacun est un diviseur de 36. Le nombre de possibilités n'étant pas très grand, on peut dresser la liste exhaustive des cas.

Produits possibles	Sommes respectives	
1 · 1 · 36	1 + 1 + 36 = 38	
1 · 2 · 18	1 + 2 + 18 = 21	
1 · 3 · 12	1 + 3 + 12 = 16	
1 · 4 · 9	1 + 4 + 9 = 14	
1 · 6 · 6	1 + 6 + 6 = 13	
2 · 2 · 9	2 + 2 + 9 = 13	
2 · 3 · 6	2 + 3 + 6 = 11	
3 · 3 · 4	3 + 3 + 4 = 10	

Il y a par conséquent huit cas possibles.

- Comme le facteur connaît le numéro de la maison d'en face et qu'il a besoin d'un renseignement supplémentaire, cela signifie que seules les sommes égales sont des solutions possibles, soit (1; 6; 6) et (2; 2; 9).
- La dernière indication « mon aînée n'a pas de sœur jumelle » entraîne que l'on doit éliminer (1; 6; 6).

Solution

Il y a des jumelles qui ont 2 ans et sa fille aînée a 9 ans.

Démarche scientifique

Définition

Stratégie consistant à:

- Commencer par faire des essais et les organiser.
- Emettre des conjectures à partir de ces essais.
- Tester ces conjectures: en cas d'échec, émettre d'autres conjectures et recommencer la procédure; en cas de réussite, prouver que la conjecture est valable pour tous les cas.

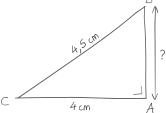
Exemple

Dans un groupe de n personnes, chacune serre, une seule fois, la main de toutes les autres. Combien y a-t-il eu de poignées de main échangées ?

ÉTAPE 1							
	Pour 2 personnes A et B: 1 poignée (A; B).						
	Pour 3 personnes A, B et C: 3 poignées (A; B); (A; C); (B; C).						
			nes A, B, : B): (A: C		(B; C); (B	; D); (C;	D).
	6 poignées (A; B); (A; C); (A; D); (B; C); (B; D); (C; D). Pour 5 personnes A, B, C, D et E: 10 poignées.			,			
Commencer par faire des essais et les organiser.	Pour 6 personnes A, B, C, D, E et F: 15 poignées.						
Ces essais peuvent être organisés	Par e	exemple p	our 5 per	sonnes:			
à l'aide d'un tableau:		Α	В	С	D	E]
- la diagonale est forcément vide	A	Χ					
(la personne ne serre pas sa propre main);	В	(A; B)	X				
- les autres cases vides	С	(A; C)	(B; C)	X			
représentent des situations déjà prises en compte:	D	(A; D)	(B; D)	(C; D)	X		
(B; A) est identique à (A; B).	E	(A; E)	(B; E)	(C; E)	(D; E)	X	
ÉTAPE 2							
Emettre une conjecture.	Le nombre de poignées de main est égal à la somme des entiers naturels inférieurs au nombre de personnes. Pour 5 personnes: 1 + 2 + 3 + 4 = 10						
ÉTAPE 3 Tester cette conjecture.	Avec 6 personnes, on constate qu'on obtient bien						
. sette conjecture.	1+2+3+4+5=15 poignées de main.						
	↑ (6 – 1)						
ÉTAPE 4							
Prouver la conjecture.	Le test de cette généralisation fonctionne pour tous les exemples déjà traités; on peut la tester et elle fonctionne pou de nombreux autres exemples. On ne trouve pas non plus de contre-exemple.						
	Toutefois, cela ne suffit pas à affirmer que cette conjecture es toujours vraie (cf. la deuxième règle du débat mathématique, p.190). Il faudrait encore la prouver à l'aide de propriétés mathématiques.						

Vérification

Vérifier


Une fois qu'on a trouvé la solution d'un problème, il est important, avant de la communiquer, de **vérifier** cette solution. Pour cela, on peut mettre en place les procédures suivantes.

 S'assurer que la solution n'est pas en contradiction avec certaines données.

Exemple 1

Calculer la longueur du segment AB dans la figure ci-contre.

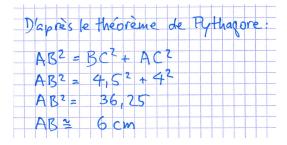
Si l'on trouve $AB \cong 6$ cm, on peut vérifier que ce résultat est faux. En effet, on sait que dans un triangle rectangle, l'hypoténuse est le plus grand côté donc AB < BC, ce qui n'est pas le cas avec le résultat trouvé.

Exemple 2

Dans un garage il y a des motos et des voitures. En tout il y a 9 véhicules et 22 roues. Combien y a-t-il de voitures? Combien y a-t-il de motos?

Si l'on trouve 3 voitures et 6 motos, on peut constater que cela donne bien 9 véhicules (3 + 6) mais que le nombre de roues ne convient pas, car $3 \times 4 + 6 \times 2 \neq 22$. Donc le résultat trouvé est faux.

 S'assurer, dans le cadre de problèmes concrets, que le résultat est réaliste.


Exemple 3

Si dans un problème, on demande de calculer la vitesse du piéton et si l'on trouve 75 km/h, on peut être sûr que le résultat est faux.

Dans le cas où la solution d'un problème qu'on a trouvée est fausse, il faut vérifier l'exécution des étapes de la résolution (calculs, etc.). Si cette exécution s'avère juste, cela signifie qu'il y a une erreur au niveau de l'élaboration des étapes de résolution.

Reprenons l'exemple 1

Voici la solution d'un élève qui a trouvé environ 6 cm.

L'exécution des étapes de la résolution est correcte (ici, les calculs sont justes) mais les étapes sont fausses. En effet, cet élève n'a pas appliqué correctement le théorème de Pythagore. La formulation correcte dans ce cas est $BC^2 = AB^2 + AC^2$. Cela permet de trouver $AB \cong 2$ cm.

Preuve

Règles du débat mathématique

Définition

En mathématiques, pour prouver qu'une affirmation est vraie, on s'appuie sur un certain nombre de règles appelées **règles du débat mathématique**. Voici les principales:

- Une affirmation est soit vraie, soit fausse; il n'y a pas d'exception.
- Des exemples, même nombreux, qui vérifient une affirmation ne suffisent pas à prouver que cette affirmation est vraie.
- Un contre-exemple suffit à prouver qu'une affirmation est fausse.
- Une mesure sur un dessin ou une constatation «à vue d'œil» ne suffisent pas à prouver qu'une affirmation géométrique est vraie ou fausse.

Conjecture

Définition

Affirmation mathématique qui semble vraie, mais qui n'a pas encore été prouvée.

Exemple

Conjecture de Goldbach (mathématicien et historien russe, 1690-1764):

«Tout nombre pair supérieur à 2 est la somme de deux nombres premiers » est une conjecture célèbre dont on ne sait toujours pas si elle est vraie ou si elle est fausse; à l'heure actuelle, on n'est pas parvenu à la démontrer.

Remarque

En sciences de la nature, une *hypothèse* a le même sens qu'une *conjecture* en mathématiques.

Si... alors...

Définitions

On utilise souvent, en mathématiques des affirmations sous la forme «si... alors...».

- L'expression qui vient juste après «si» est appelée condition et l'expression qui suit «alors» est appelée conclusion.
- On obtient la réciproque d'une telle affirmation en inversant condition et conclusion; la réciproque d'un énoncé vrai n'est pas toujours vraie.

Exemples

Affirmation 1	Réciproque 1 – vraie
Si un triangle possède trois côtés isométriques, alors il possède trois angles isométriques.	Si un triangle possède trois angles isométriques, alors il possède trois côtés isométriques.

Affirmation 2	Réciproque 2 – vraie
Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés.	Si, dans un triangle, le carré de la mesure du plus long côté est égal à la somme des carrés des mesures des deux autres côtés, alors le triangle est rectangle.

Affirmation 3	Réciproque 3 – fausse
Si un nombre se termine par 2, alors il est divisible par 2.	Si un nombre est divisible par 2, alors il se termine par 2.

Contre-exemple

Définition

Exemple qui contredit une affirmation. Il suffit d'un seul contre-exemple pour déclarer fausse une affirmation.

Exemples

- «Tous les nombres pairs sont des multiples de 4»
 est une affirmation fausse car, par exemple, 6 est un nombre pair, mais n'est pas un multiple de 4. Le nombre 6 est un contre-exemple de cette affirmation.
- «Tous les nombres premiers sont impairs»
 est une affirmation fausse, car 2 est premier et pair, c'est l'unique contre-exemple.
- Multiple, diviseur (p. 12), Nombre premier (p. 13)

Prouver qu'une affirmation mathématique est fausse

Pour prouver qu'une affirmation mathématique est fausse, il suffit de trouver un contre-exemple.

Exemple

L'affirmation mathématique suivante est-elle vraie ou fausse? « Quel que soit le nombre entier, s'il est divisible par 2 alors il se termine par 2. »

Cette affirmation est fausse car, par exemple, 14 est divisible par 2 et pourtant il ne se termine pas par 2. Ainsi 14 est un contre-exemple de l'affirmation ci-dessus.

----> Contre-exemple (p. 191)

Prouver qu'une affirmation mathématique est vraie

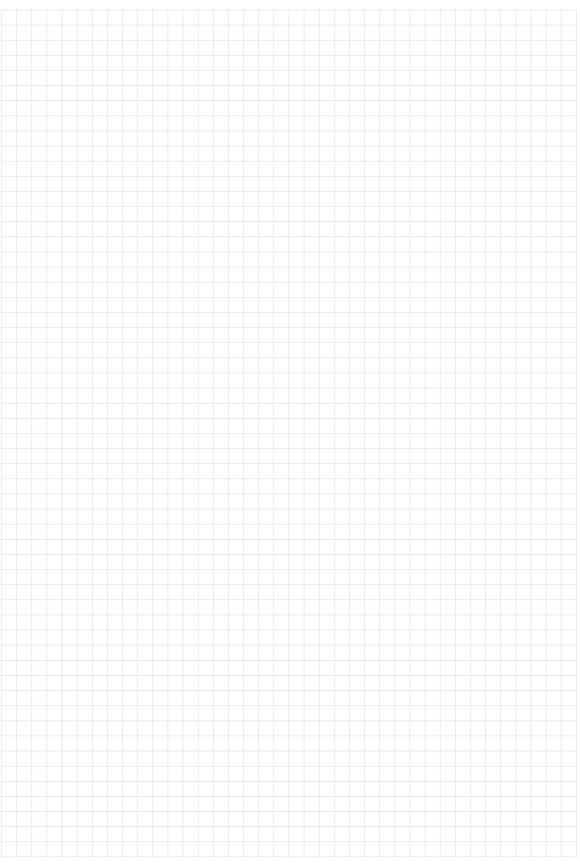
Pour prouver qu'une affirmation mathématique est vraie, il faut utiliser des propriétés.

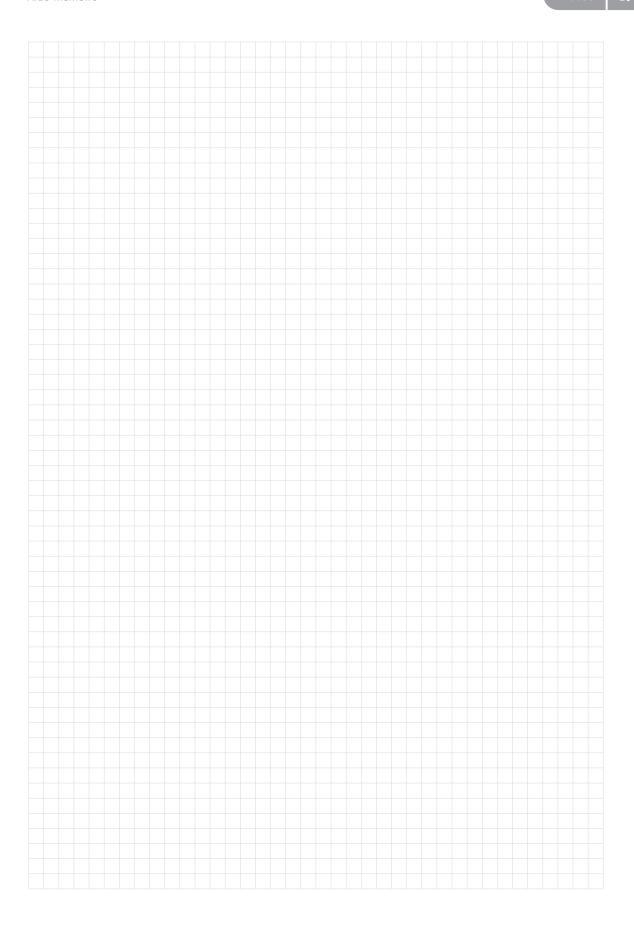
Exemple

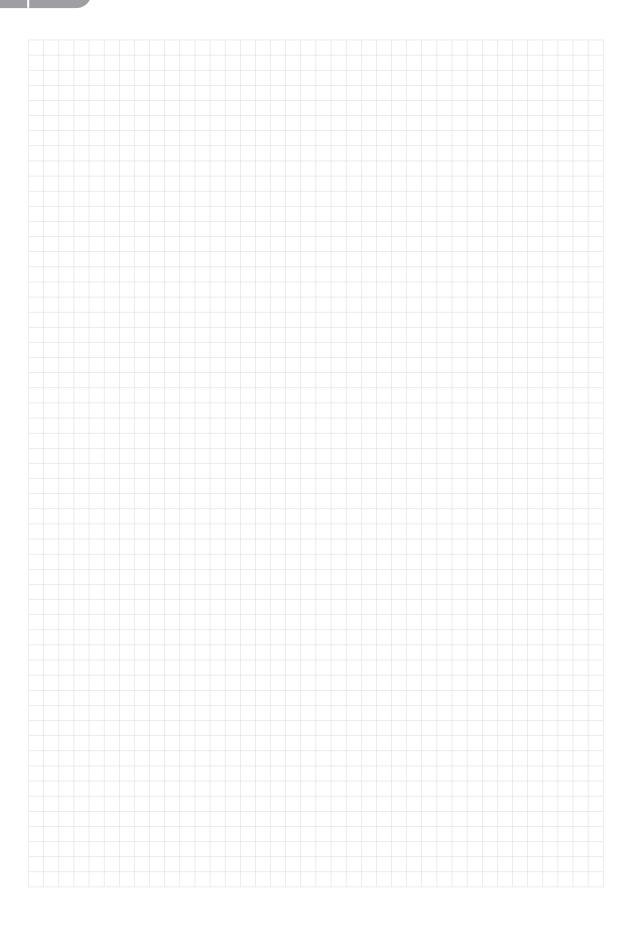
L'affirmation mathématique suivante est-elle vraie ou fausse?

«Le triangle ABC tel que AB = 3 cm, AC = 4 cm et BC = 5 cm est un triangle rectangle.»

Le fait de dessiner le triangle et d'utiliser l'équerre pour vérifier qu'il possède un angle droit ne permet pas de prouver que ABC est triangle rectangle, d'après la 4e règle du débat mathématique ci-dessus.


Par contre, la réciproque du théorème de Pythagore permet de prouver que cette affirmation est vraie:

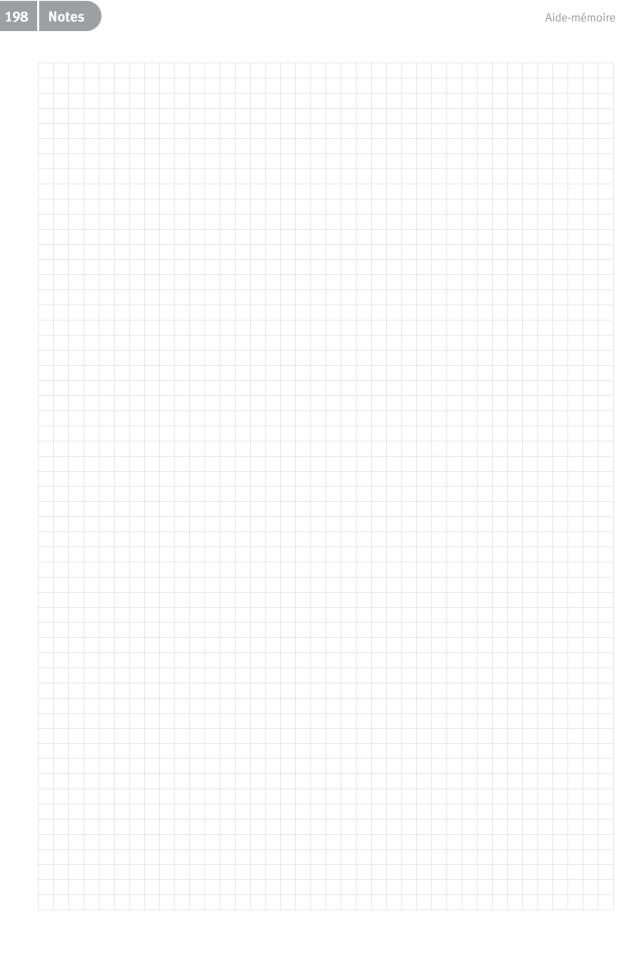

En effet, $AB^2 + AC^2 = 3^2 + 4^2 = 25$ et $BC^2 = 5^2 = 25$.

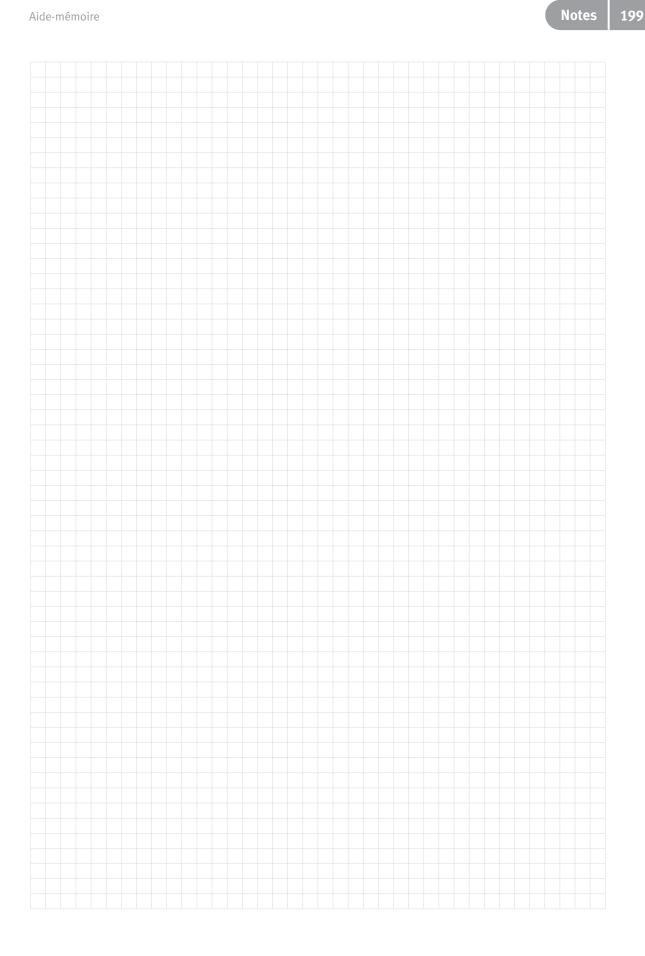

Donc $AB^2 + AC^2 = BC^2$.

D'après la réciproque du théorème de Pythagore, le triangle ABC est rectangle en A.

---- Théorème de Pythagore (p. 174)

Conventions et notations


Objet, notion, propriété	Notations, conventions et commentaires
Qui est proche de	≅
Inférieur à (plus petit que) Supérieur à (plus grand que)	< >
Inférieur ou égal à Supérieur ou égal à	≤ >
Couple de nombres	(a; b)
Ensemble Ensemble vide Ensemble de solution	${a;b;}$ $\emptyset = {}$ $S = {x_1; x_2;}$
Est élément de, n'est pas élément de ou Appartient à, n'appartient pas à	∈, ∉
Ensembles de nombres	 N: ensemble des nombres naturels Z: ensemble des nombres entiers relatifs D: ensemble des nombres décimaux Q: ensemble des nombres rationnels R: ensemble des nombres réels
Symboles représentant, numériquement parlant, «ce qu'il y a de plus grand » «ce qu'il y a de plus petit »	+ ∞ - ∞
Opposé d'un nombre x	- x
Inverse d'un nombre $x (x \neq 0)$	x^{-1} ou $\frac{1}{x}$
Pour-cent	%
Pour-mille	% o
Fonction On trouve aussi les notations:	$f: \mathbb{R} \longmapsto \mathbb{R}$ $x \longmapsto y = \dots$ $x \longmapsto f(x) = \dots$


Objet, notion, propriété	Notations, conventions et commentaires
Point $+_A \times_P$	le point P le point A
Segment B A A A	le segment AB ou le segment a AB et a désignent aussi bien le segment que sa mesure exemple: AB = 2,4 cm ou a = 24 mm
Droite C D d	la droite <i>CD</i> la droite <i>d</i>
Demi-droite R e	la demi-droite issue de Q passant par R la demi-droite QR la demi-droite Qe
Vecteur N N N N N N N N N N N N N N N N N N N	le vecteur \overrightarrow{V} le vecteur \overrightarrow{MN}
Angle $A \times A $	l'angle \widehat{AOB} l'angle \widehat{xOy} l'angle \widehat{aOy} l'angle \widehat{AOB} désigne aussi bien l'angle que sa mesure
Figure du plan P Q f S	le quadrilatère <i>PQRS</i> la figure <i>f</i> le quadrilatère <i>f</i> le périmètre <i>p</i> et l'aire <i>A</i> le côté <i>PS</i>
Cercle S C C C C C C C C C C C C C C C C C C	le cercle c l'arc \widehat{RS} le cercle c (O ; r) \widehat{RS} désigne aussi bien l'arc que sa mesure
Figure de l'espace	le polyèdre <i>p</i> la face <i>f</i> l'arête <i>c</i> le volume <i>V</i>
Plan	le plan P
Isométrie de segments A D	AB = CD des segments isométriques peuvent être marqués par un même symbole
Isométrie d'angles	$\alpha=\beta$ des angles isométriques peuvent être marqués par un même symbole

Objet, notion, propriété	Notations, conventions et commentaires		
Sécantes A d'	deux droites d et d' possédant un seul point d'intersection A		
Concourantes d d'	plusieurs droites d , d' et d'' possédant un seul point d'intersection A		
Parallèles e f	les droites e et f sont parallèles e // f		
Perpendiculaires	sur ce dessin, l'angle droit formé par les droites a et b est noté à l'aide du signe \bot ; parfois, il est signalé à l'aide des symboles \trianglerighteq ou \trianglerighteq $a \bot b$		
Isométries appliquées à une figure <i>f</i>	translation $f \stackrel{\mathcal{T}'(\overrightarrow{V})}{\longrightarrow} f'$ symétrie axiale $f \stackrel{S(d)}{\longrightarrow} f'$ rotation $f \stackrel{\mathcal{R}(O; +120^\circ)}{\longrightarrow} f'$ symétrie centrale $f \stackrel{S(O)}{\longrightarrow} f'$		
Homothétie	homothétie $f \stackrel{\mathcal{H}(O;k)}{\longmapsto} f'$		
Composition de transformations	la composition des transformations f et g peut être notée $g \circ f$; on commencera par la transformation f , puis la transformation g		

Alphabet grec

Majuscules	Minuscules	En français	Majuscules	Minuscules	En français
A	α	alpha	N	ν	nu
В	eta	bêta	Ξ	ع	xi
Γ	γ	gamma	O	o	omicron
Δ	δ	delta	П	π	pi
E	ε	epsilon	P	ho	rhô
Z	ζ	dzêta	Σ	σ	sigma
H	η	êta	T	au	tau
Θ	θ	thêta	Y	v	upsilon
I	ι	iota	Φ	arphi	phi
K	K	kappa	X	χ	khi
Λ	λ	lambda	Ψ	ψ	psi
M	μ	mu	Ω	ω	oméga

Table des matières

Nombres et opérations	Passer d'une écriture fractionnaire à une écriture décimale28
Généralités	Passer d'une écriture décimale finie
Ensembles de nombres	à une écriture fractionnaire
Chiffres et nombres	Amplification et simplification de fractions 29
Droite numérique	Addition et soustraction de fractions
Ordre croissant et ordre décroissant	Additionner et soustraire des fractions 30
Estimation d'un résultat	Multiplication de fractions
Ensemble des nombres naturels	Calculer la fraction d'un nombre
Nombres naturels	Nombres inverses
Multiple, diviseur	Division de fractions
Critères de divisibilité	■ Ensemble des nombres réels
Nombre premier	Nombres réels
Décomposition en produit de facteurs premiers 14	■ Puissances
Décomposer un nombre en un produit	Puissance d'exposant positif
de facteurs premiers	Puissance d'exposant négatif
Multiple commun, ppmc	Puissance de dix
Calculer le ppmc de plusieurs nombres	Propriétés des puissances
Diviseur commun, pgdc	Notation scientifique
Calculer le pgdc de plusieurs nombres 16	Ecrire un nombre décimal positif
■ Ensemble des nombres entiers relatifs 17	en notation scientifique
Nombres entiers relatifs	■ Racines
Distance à zéro	Racine carrée
Nombres opposés	Racine cubique
Addition de nombres relatifs	Propriétés des racines
Soustraction de nombres relatifs	Simplifier des sommes contenant des racines carrées
Ecriture simplifiée d'une somme ou	
d'une différence de nombres relatifs 19	Probabilités
Effectuer un calcul comportant des sommes et des	Série statistique et fréquence
différences de nombres relatifs 19	Situation aléatoire, événement
Multiplication de nombres relatifs	40
Division de nombres relatifs 20	Fonctions et algèbre
Ensemble des nombres décimaux 21	■ Fonctions
Nombres décimaux	Généralités
Représentation de nombres décimaux sur une droite	Représentation graphique
graduée	Définir une fonction
Approximation d'un nombre décimal	Fonction affine
Additionner des nombres	Construire la représentation graphique
décimaux positifs en colonnes	d'une fonction affine
Soustraction	Déterminer la pente d'une droite à partir de sa représentation graphique 50
Soustraire des nombres décimaux	Déterminer l'expression fonctionnelle
positifs en colonnes	d'une fonction affine à partir de sa
Multiplication	représentation graphique 51
Multiplier des nombres décimaux	Cas particuliers de la fonction affine 52
positifs en colonnes 24	Fonction quadratique
Division	Fonction cubique
Diviser un nombre décimal positif par	Fonction racine carrée
un nombre décimal positif	Fonction homographique
Propriétés de l'addition et de la multiplication 25	Proportionnalité
Priorités des opérations	Généralités
Effectuer un calcul avec ou sans parenthèses 27	Résoudre un problème de proportionnalité 57
Ensemble des nombres rationnels	Pourcentage
Nombres rationnels	Déterminer un pourcentage

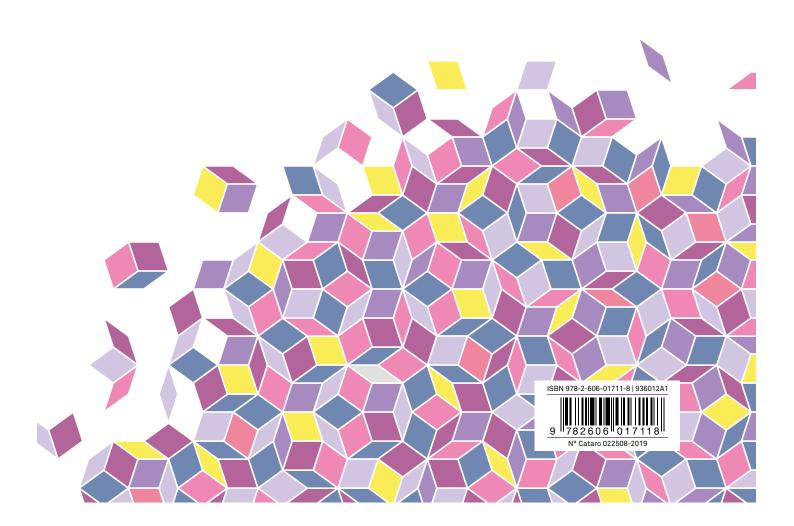
Echelle	Espace Espace
Déterminer l'échelle d'une reproduction de la réalité	
Pente	5
Déterminer la pente moyenne	
Vitesse moyenne	
Déterminer la vitesse moyenne	_
Masse volumique	
Déterminer la masse volumique d'un objet	
Débit	
Déterminer le débit	Segments isométriques
Diagrammes	Milieu d'un segment
Diagramme	
Construire un diagramme circulaire	
Calcul littéral	Tracer la droite perpendiculaire à une
Expression littérale	droite donnée passant par un point donné 93
Alléger l'écriture d'expressions littérales	Droites parallèles94
Egalité de deux expressions littérales	Propriétés des droites parallèles et perpendiculaires. 94
Monôme	Tracer la droite parallèle à une droite
Degré d'un monôme	donnée passant par un point donné
Multiplication de monômes	Médiatrice d'un segment
Monômes semblables	Construire la médiatrice d'un segment avec une règle non graduée et un compas 97
Addition ou soustraction de monômes semblables .	69 Plan
Polynôme	69 Repérage d'un point dans le plan
Réduction d'un polynôme	(0) Carola at disqua
Degré d'un polynôme	Arc de cercle
Addition de polynômes	70 Secteur circulaire 100
Polynômes opposés	Tangonto à un corolo
Soustraction de polynômes	/ Ι Δησίο 101
Somme ou produit d'une expression littérale	Manufactus and a livida diun reprostati
Multiplication de polynômes	Classoment des angles
Produits remarquables	12 Angles adiscepts 104
Développement d'un produit	Angles complémentaires
Calculer la valeur numérique d'une expression	Angles supplémentaires
littérale connaissant la valeur de la lettre	
Factorisation d'une expression littérale	74 Bissectrice d'un angle
Factoriser une expression littérale	74 Construire la bissectrice d'un angle
Equations	76 avec une règle et un compas
Equation	Angles opposés par le sommet
Equations équivalentes	Angles correspondents 107
Equation du premier degré à une inconnue	Angles alternes-internes
Règles d'équivalence	77 Angles alternes-externes
Résoudre une équation du premier degré	Angle au centre d'un cercle
à une inconnue	
Equation du premier degré à deux inconnues	
Système de deux équations du premier degré à deux inconnues	Figure plane
Résoudre un système de deux équations	1 diygone
du premier degré à deux inconnues	Diagonale d'un polygone
Equation du deuxième degré à une inconnue	Polygone convexe ou non convexe
Résolution d'une équation du deuxième degré à une	Polygone inscrit dans un cercle
inconnue	
Résoudre une équation du deuxième degré	Angle au centre et angle intérieur d'un polygone régulier 113
à une inconnue	32 Construire un polygone régulier avec une
Calcul de la mesure d'une grandeur à partir d'une formule	ràgic un repportour et un compe
Utiliser une formule pour calculer une mesure	Triangle
de grandeur	

	Classement des triangles	115	Unités de volume et de capacité	15
	Inégalité triangulaire	115	Convertir les unités de volume	15
	Somme des angles d'un triangle	116	Convertir les unités de volume	
	Cercle circonscrit à un triangle et médiatrices	116	en unités de capacité et inversement	
	Cercle inscrit à un triangle et bissectrices	117	Unités de masse	16
	Hauteurs d'un triangle et orthocentre	117	Unités de temps	16
	Tracer une hauteur d'un triangle		Convertir les unités de temps	16
	avec une équerre	118	Périmètre d'une surface	16
	Médianes et centre de gravité	119	Généralités	
	Triangles isométriques	120	Périmètre des surfaces usuelles	16
	Triangles semblables	121	Aire d'une surface	16
	Figures semblables	122	Généralités	16
	Quadrilatère	123	Aire des surfaces usuelles	16
	Quadrilatères particuliers	123	Calculer l'aire d'une figure	16
	Classement des quadrilatères	125	Volume d'un solide	169
	Transformations géométriques		Généralités	
	Transformations du plan		Volume des solides usuels	
	Quelques propriétés des transformations du plan		Calculer le volume d'un solide	
	Isométrie		Théorèmes	17:
	Vecteur		Triangle rectangle et vocabulaire	
	Translation	129	Théorème de Pythagore	
	Construire l'image d'un point par une translation.		Calculer la longueur d'un segment	
	Symétrie axiale		en utilisant le théorème de Pythagore	17
	Construire l'image d'un point par une		Prouver qu'un triangle est rectangle en utilisant	
	symétrie axiale	131	la réciproque du théorème de Pythagore	17
	Axe de symétrie	132	Théorème de Thalès	17
	Symétrie centrale	132	Calculer la longueur d'un segment en utilisant	
	Construire l'image d'un point par		le théorème de Thalès	170
	une symétrie centrale		Recherche et stratégies	
	Centre de symétrie	134	Recherche et stratégies Problèmes et résolutions	18
	Centre de symétrie	134 134	Problèmes et résolutions	
	Centre de symétrie	134 134 136	Problèmes et résolutions	18
	Centre de symétrie	134 134 136 137	Problèmes et résolutions	18 18
	Centre de symétrie	134 134 136 137	Problèmes et résolutions	183 183 183
	Centre de symétrie	134 134 136 137 138	Problèmes et résolutions Problème. Etapes de résolution d'un problème. Stratégies de recherche. Stratégie	183 183 183
	Centre de symétrie	134 134 136 137 138	Problèmes et résolutions Problème. Etapes de résolution d'un problème. Stratégies de recherche. Stratégie Analogie	183 183 183 183 184
	Centre de symétrie	134 136 137 138	Problèmes et résolutions Problème. Etapes de résolution d'un problème. Stratégies de recherche. Stratégie Analogie Modélisation	183 183 183 184 184
	Centre de symétrie	134 134 136 137 138 140	Problèmes et résolutions Problème. Etapes de résolution d'un problème. Stratégies de recherche. Stratégie Analogie Modélisation Tâtonnement réfléchi	183 183 183 184 184 184
	Centre de symétrie	134 134 136 137 138 140 140	Problèmes et résolutions Problème. Etapes de résolution d'un problème. Stratégies de recherche. Stratégie Analogie Modélisation Tâtonnement réfléchi Chaînage avant.	183 183 183 184 184 185 186
	Centre de symétrie	134 134 136 137 138 140 140 141 142	Problèmes et résolutions Problème. Etapes de résolution d'un problème. Stratégies de recherche. Stratégie Analogie Modélisation Tâtonnement réfléchi Chaînage avant. Chaînage arrière	183 183 183 184 184 184 186 186
	Centre de symétrie	134 134 136 137 138 140 140 141 142 142	Problèmes et résolutions Problème. Etapes de résolution d'un problème. Stratégies de recherche. Stratégie Analogie Modélisation Tâtonnement réfléchi Chaînage avant. Chaînage arrière Etude systématique de cas	183 183 184 184 186 186 186 186
	Centre de symétrie	134 134 136 137 138 140 140 141 142 142 144	Problèmes et résolutions Problème. Etapes de résolution d'un problème. Stratégies de recherche. Stratégie Analogie Modélisation Tâtonnement réfléchi Chaînage avant. Chaînage arrière Etude systématique de cas Démarche scientifique	183 183 184 184 186 186 186 186 186
	Centre de symétrie	134 134 136 137 138 140 140 141 142 142 144 144	Problèmes et résolutions Problème. Etapes de résolution d'un problème. Stratégies de recherche. Stratégie Analogie Modélisation Tâtonnement réfléchi Chaînage avant. Chaînage arrière Etude systématique de cas Démarche scientifique Vérification	183 183 183 184 184 186 186 186 186 186
	Centre de symétrie Rotation. Construire l'image d'un point par une rotation. Retrouver le centre et l'angle d'une rotation Homothétie. Construire l'image d'un point par une homothétie. Propriétés des isométries et des homothéties du plan. Similitude Géométrie dans l'espace. Représentation d'un objet dans l'espace. Repérage d'un point dans l'espace. Polyèdre Prisme droit.	134 136 137 138 140 140 141 142 142 144 144 145	Problèmes et résolutions Problème. Etapes de résolution d'un problème. Stratégies de recherche. Stratégie Analogie Modélisation Tâtonnement réfléchi Chaînage avant. Chaînage arrière Etude systématique de cas Démarche scientifique Vérification Vérifier.	183 183 183 184 184 186 186 188 188 188
	Centre de symétrie Rotation. Construire l'image d'un point par une rotation. Retrouver le centre et l'angle d'une rotation. Homothétie. Construire l'image d'un point par une homothétie. Propriétés des isométries et des homothéties du plan. Similitude. Géométrie dans l'espace. Représentation d'un objet dans l'espace. Repérage d'un point dans l'espace. Polyèdre. Prisme droit. Parallélépipède rectangle ou pavé droit.	134 136 137 138 140 140 141 142 142 144 144 145 146	Problèmes et résolutions Problème. Etapes de résolution d'un problème. Stratégies de recherche. Stratégie Analogie Modélisation Tâtonnement réfléchi Chaînage avant. Chaînage arrière Etude systématique de cas Démarche scientifique Vérification Vérifier. Preuve.	183 183 183 184 186 186 186 186 186 186 186
	Centre de symétrie Rotation. Construire l'image d'un point par une rotation. Retrouver le centre et l'angle d'une rotation. Homothétie. Construire l'image d'un point par une homothétie. Propriétés des isométries et des homothéties du plan. Similitude. Géométrie dans l'espace. Représentation d'un objet dans l'espace. Repérage d'un point dans l'espace. Polyèdre. Prisme droit. Parallélépipède rectangle ou pavé droit. Pyramide.	134 136 137 138 140 140 141 142 142 144 144 145 146 147	Problèmes et résolutions Problème. Etapes de résolution d'un problème. Stratégies de recherche. Stratégie Analogie Modélisation Tâtonnement réfléchi Chaînage avant. Chaînage arrière Etude systématique de cas Démarche scientifique Vérification Vérifier. Preuve Règles du débat mathématique	183 183 183 184 186 186 186 186 186 186 186 186 186 186
	Centre de symétrie Rotation. Construire l'image d'un point par une rotation. Retrouver le centre et l'angle d'une rotation. Homothétie. Construire l'image d'un point par une homothétie. Propriétés des isométries et des homothéties du plan. Similitude. Géométrie dans l'espace. Représentation d'un objet dans l'espace. Repérage d'un point dans l'espace. Polyèdre. Prisme droit. Parallélépipède rectangle ou pavé droit. Pyramide. Polyèdre régulier.	134 136 137 138 140 140 141 142 142 144 144 145 146 147 148	Problèmes et résolutions Problème. Etapes de résolution d'un problème. Stratégies de recherche. Stratégie Analogie Modélisation Tâtonnement réfléchi Chaînage avant. Chaînage arrière Etude systématique de cas Démarche scientifique Vérification Vérifier. Preuve Règles du débat mathématique Conjecture.	183 183 183 184 186 186 186 189 190 190
	Centre de symétrie Rotation. Construire l'image d'un point par une rotation. Retrouver le centre et l'angle d'une rotation. Homothétie. Construire l'image d'un point par une homothétie. Propriétés des isométries et des homothéties du plan. Similitude. Géométrie dans l'espace. Représentation d'un objet dans l'espace. Repérage d'un point dans l'espace. Polyèdre Prisme droit. Parallélépipède rectangle ou pavé droit. Pyramide. Polyèdre régulier. Cylindre droit.	134 134 136 137 138 140 140 141 142 142 144 144 145 146 147 148 149	Problèmes et résolutions Problème. Etapes de résolution d'un problème. Stratégies de recherche. Stratégie Analogie Modélisation Tâtonnement réfléchi Chaînage avant. Chaînage arrière Etude systématique de cas Démarche scientifique Vérification Vérifier. Preuve Règles du débat mathématique Conjecture. Si alors.	183 183 183 184 186 186 186 186 186 196 196 196
	Centre de symétrie Rotation. Construire l'image d'un point par une rotation. Retrouver le centre et l'angle d'une rotation. Homothétie. Construire l'image d'un point par une homothétie. Propriétés des isométries et des homothéties du plan. Similitude. Géométrie dans l'espace. Représentation d'un objet dans l'espace. Repérage d'un point dans l'espace. Polyèdre Prisme droit. Parallélépipède rectangle ou pavé droit. Pyramide. Polyèdre régulier. Cylindre droit. Cône de révolution	134 134 136 137 138 140 140 141 142 142 144 144 145 146 147 148 149 149	Problèmes et résolutions Problème. Etapes de résolution d'un problème. Stratégies de recherche. Stratégie Analogie Modélisation Tâtonnement réfléchi Chaînage avant. Chaînage arrière Etude systématique de cas Démarche scientifique Vérification Vérifier Preuve Règles du débat mathématique Conjecture. Si alors Contre-exemple	183 183 183 184 186 186 186 186 186 196 196 196
•	Centre de symétrie Rotation. Construire l'image d'un point par une rotation. Retrouver le centre et l'angle d'une rotation. Homothétie. Construire l'image d'un point par une homothétie. Propriétés des isométries et des homothéties du plan. Similitude. Géométrie dans l'espace. Représentation d'un objet dans l'espace. Repérage d'un point dans l'espace. Polyèdre Prisme droit. Parallélépipède rectangle ou pavé droit. Pyramide. Polyèdre régulier. Cylindre droit.	134 134 136 137 138 140 140 141 142 142 144 144 145 146 147 148 149 149	Problèmes et résolutions Problème. Etapes de résolution d'un problème. Stratégies de recherche. Stratégie Analogie Modélisation Tâtonnement réfléchi Chaînage avant. Chaînage arrière Etude systématique de cas Démarche scientifique Vérification Vérifier. Preuve Règles du débat mathématique Conjecture. Si alors Contre-exemple Prouver qu'une affirmation	183 183 183 184 186 186 186 186 186 196 196 196 196
	Centre de symétrie Rotation. Construire l'image d'un point par une rotation. Retrouver le centre et l'angle d'une rotation Homothétie. Construire l'image d'un point par une homothétie. Propriétés des isométries et des homothéties du plan. Similitude Géométrie dans l'espace Représentation d'un objet dans l'espace. Repérage d'un point dans l'espace. Polyèdre Prisme droit. Parallélépipède rectangle ou pavé droit Pyramide. Polyèdre régulier. Cylindre droit. Cône de révolution Sphère ou boule	134 134 136 137 138 140 140 141 142 142 144 144 145 146 147 148 149 149	Problèmes et résolutions Problème. Etapes de résolution d'un problème. Stratégies de recherche. Stratégie Analogie Modélisation Tâtonnement réfléchi Chaînage avant. Chaînage arrière Etude systématique de cas Démarche scientifique Vérification Vérifier. Preuve Règles du débat mathématique Conjecture. Si alors Contre-exemple Prouver qu'une affirmation mathématique est fausse	183 183 183 184 186 186 186 186 186 196 196 196 196
	Centre de symétrie Rotation. Construire l'image d'un point par une rotation. Retrouver le centre et l'angle d'une rotation Homothétie Construire l'image d'un point par une homothétie. Propriétés des isométries et des homothéties du plan. Similitude Géométrie dans l'espace. Représentation d'un objet dans l'espace. Repérage d'un point dans l'espace. Polyèdre Prisme droit. Parallélépipède rectangle ou pavé droit. Pyramide. Polyèdre régulier. Cylindre droit. Cône de révolution Sphère ou boule.	134 134 136 137 138 140 140 141 142 142 144 145 146 147 148 149 149 150	Problèmes et résolutions Problème. Etapes de résolution d'un problème. Stratégies de recherche. Stratégie Analogie Modélisation Tâtonnement réfléchi Chaînage avant. Chaînage arrière Etude systématique de cas Démarche scientifique Vérification Vérifier. Preuve Règles du débat mathématique Conjecture. Si alors Contre-exemple Prouver qu'une affirmation	183 183 183 184 186 186 186 189 190 190 190 190
	Centre de symétrie Rotation. Construire l'image d'un point par une rotation. Retrouver le centre et l'angle d'une rotation Homothétie Construire l'image d'un point par une homothétie. Propriétés des isométries et des homothéties du plan. Similitude Géométrie dans l'espace Représentation d'un objet dans l'espace. Repérage d'un point dans l'espace. Polyèdre Prisme droit. Parallélépipède rectangle ou pavé droit. Pyramide. Polyèdre régulier. Cylindre droit. Cône de révolution Sphère ou boule. Grandeurs et mesures Unités de mesure	134 134 136 137 138 140 140 141 142 142 144 145 146 147 148 149 149 150	Problèmes et résolutions Problème. Etapes de résolution d'un problème. Stratégies de recherche. Stratégie Analogie Modélisation Tâtonnement réfléchi Chaînage avant. Chaînage arrière Etude systématique de cas Démarche scientifique Vérification Vérifier. Preuve Règles du débat mathématique Conjecture. Si alors Contre-exemple Prouver qu'une affirmation mathématique est fausse Prouver qu'une affirmation	183 183 183 184 186 186 186 189 190 190 190 190
	Centre de symétrie Rotation. Construire l'image d'un point par une rotation. Retrouver le centre et l'angle d'une rotation Homothétie Construire l'image d'un point par une homothétie. Propriétés des isométries et des homothéties du plan. Similitude Géométrie dans l'espace Représentation d'un objet dans l'espace. Repérage d'un point dans l'espace. Polyèdre Prisme droit. Parallélépipède rectangle ou pavé droit. Pyramide. Polyèdre régulier. Cylindre droit. Cône de révolution Sphère ou boule. Grandeurs et mesures Unités de mesure. Unités de longueur	134 134 136 137 138 140 140 141 142 142 144 145 146 147 148 149 149 150	Problèmes et résolutions Problème. Etapes de résolution d'un problème. Stratégies de recherche. Stratégie Analogie Modélisation Tâtonnement réfléchi Chaînage avant. Chaînage avrière Etude systématique de cas Démarche scientifique Vérification Vérifier Preuve Règles du débat mathématique Conjecture. Si alors. Contre-exemple Prouver qu'une affirmation mathématique est fausse Prouver qu'une affirmation mathématique est vraie	183 183 184 184 186 186 186 186 196 196 196 197 197 197
	Centre de symétrie Rotation. Construire l'image d'un point par une rotation. Retrouver le centre et l'angle d'une rotation Homothétie. Construire l'image d'un point par une homothétie. Propriétés des isométries et des homothéties du plan. Similitude Géométrie dans l'espace Représentation d'un objet dans l'espace. Repérage d'un point dans l'espace. Polyèdre Prisme droit. Parallélépipède rectangle ou pavé droit. Pyramide. Polyèdre régulier. Cylindre droit. Cône de révolution Sphère ou boule Grandeurs et mesures Unités de longueur Convertir les unités de longueur.	134 134 136 137 138 140 140 141 142 142 144 145 146 147 148 149 149 150	Problèmes et résolutions Problème. Etapes de résolution d'un problème. Stratégies de recherche. Stratégie Analogie Modélisation Tâtonnement réfléchi Chaînage avant. Chaînage avant. Chaînage arrière Etude systématique de cas Démarche scientifique Vérification Vérifier. Preuve Règles du débat mathématique Conjecture. Si alors Contre-exemple Prouver qu'une affirmation mathématique est fausse Prouver qu'une affirmation mathématique est vraie	183 183 184 186 186 186 186 186 186 196 196 196 196 196 196
	Centre de symétrie Rotation. Construire l'image d'un point par une rotation. Retrouver le centre et l'angle d'une rotation Homothétie Construire l'image d'un point par une homothétie. Propriétés des isométries et des homothéties du plan. Similitude Géométrie dans l'espace Représentation d'un objet dans l'espace. Repérage d'un point dans l'espace. Polyèdre Prisme droit. Parallélépipède rectangle ou pavé droit. Pyramide. Polyèdre régulier. Cylindre droit. Cône de révolution Sphère ou boule. Grandeurs et mesures Unités de mesure. Unités de longueur	134 134 136 137 138 140 140 141 142 142 144 145 146 147 148 149 149 150 156 156 156 156 157	Problèmes et résolutions Problème. Etapes de résolution d'un problème. Stratégies de recherche. Stratégie Analogie Modélisation Tâtonnement réfléchi Chaînage avant. Chaînage avrière Etude systématique de cas Démarche scientifique Vérification Vérifier Preuve Règles du débat mathématique Conjecture. Si alors. Contre-exemple Prouver qu'une affirmation mathématique est fausse Prouver qu'une affirmation mathématique est vraie	183 183 183 184 186 186 186 186 196 196 196 196 196 196 196 196

Index

Α		arête d'un polyèdre	144	coefficient de linéarité	
abscisse (d'un point)	98, 144	arrondi	22	(facteur de linéarité)	55
absorbant (élément)	26	arrondir un nombre	22	coefficient de proportionnalité	
addition	22	associativité	25	(facteur de proportionnalité)	55
addition (propriétés)	25	axe de symétrie	132	coefficient d'un monôme	68
addition de fractions	30	axe de symétrie d'un angl	e 105	combinaison linéaire (résolution	
addition de monômes semb	lables 69	axe des x (abscisse)	98, 144	d'équation)	80
addition de nombres décima	aux 22, 23	axe des y (ordonnée)	98, 144	commutativité	25
addition de nombres relatifs	18	axe des z (cote)	144	cône (volume)	171
addition de polynômes	70	axes de symétrie (polygon		cône de révolution	149
adjacents (angles)	104	réguliers)	112	conjecture	189
affine (fonction)	48-52	axe de symétrie (quadrilate		conservation des longueurs (propriétés)	126
agrandissement d'une figure	139	particuliers)	123-124	conservation des angles	120
agrandissement d'une figure	59, 122	В		(propriétés)	126
aigu (angle)	103	В		conservation du parallélisme	
aire (unité)	157, 158	base (cône, cylindre, prisn		(propriétés)	127
aire d'une surface	165-169	, ,	.5, 147, 149 32	conservation de l'orientation	
aire des surfaces usuelles	165-167	base d'une puissance billion		(propriétés)	127
aléatoire (situation)	38	billionième	33 33	conservation des directions	
alléger l'écriture d'écriture				(propriétés)	127
d'expressions littérale	67	bissectrice d'un angle	105, 106	conservation du sens	
alphabet grec	197	bissectrices (triangle)	117	des vecteurs (propriétés)	127
amplification de fractions	29	boule	150	constante (fonction)	50
analogie	184	boule (volume)	171	construire l'image d'un point	
angle (mesurer)	102	_		par une homothétie	140
angle aigu	103	C		construire l'image d'un point	
angle au centre d'un cercle	108	calcul littéral	67-75	par une rotation	136
angle au centre d'un polygo	ne	calculer la fraction d'un no		construire l'image d'un point	404
régulier	113	capacité (unité)	159	par une symétrie axiale	131
angle de rotation	134	carré (périmètre et aire)	164, 166	construire l'image d'un point par une symétrie centrale	133
angle droit	103	carré (propriétés)	124, 125	construire l'image d'un point	100
angle inscrit dans un cercle	108-109	cartésien (diagramme)	64	par une translation	130
angle intérieur		cathètes	173	construire la bissectrice	
(polygone régulier)	113	centaine	21	d'un angle	106
angle nul	103	centi	33	construire un polygone	
angle obtus	103	centième	21, 33		3-114
angle plat	103	centre d'homothétie	138	contre-exemple	190
angle plein	103	centre d'un cercle	99	convention d'écriture (expressio	n
angle rentrant	103	centre d'une sphère	150	littérale)	67
angles	101-109	centre de gravité du triang		conventions et notations 195	5-197
angles (classement)	103	centre de polygone	112	convertir les unités d'aire	158
angles adjacents	104	centre de rotation	134	convertir les unités de longueur	156
angles alternes-externes	108	centre de symétrie	134	convertir les unités de temps161	1, 162
angles alternes-internes	107	cercle	49	convertir les unités de volume	159
angles complémentaires	104	cercle (périmètre et aire)	164, 166	convertir les unités de volume	
angles correspondants	107	cercle circonscrit à un trial cercle de Thalès	ngle 116 109	en unité de capacité et	400
angles isométriques	105			inversement	160
angles opposés	106	cercle inscrit à un triangle cerf-volant (propriétés)	117	convexe ou non convexe	
angles supplémentaires	104	4 1 ,	124	(polygone)	111
approximation d'un nombre décimal	22	chaînage arrière	186, 187 186	coordonnée 98 coordonnées	3, 144 46
arc de cercle	100	chaînage avant chiffres	11	cordonnees	99
arc de cercle (périmètre)	164	circonscrit (cercle)	116	corde correspondants (angles)	107
are (a)	157	circulaire (diagramme)	65, 66	cote d'un point (repérage)	144
a. 5 (a)	101	on outaine (diagrammo)	55, 55	solo a an point (reperage)	177

Index


côté d'un polygone	110	distance à zéro	17	équation	76-83
côtés de l'angle droit	173	distance d'un point à une d	roite 91	équation du deuxième	
critères de divisibilité	13	distance entre deux droites		degré à une inconnue	80-82
croissant (ordre)	11	parallèles	91	équation du premier degré	
croquis	184	distance entre deux points	91	à deux inconnues	78
cube	146, 148	distance horizontale	60	équation du premier degré	
cube (volume)	170	distributivité	26	à une inconnue	76
cubique (fonction)	53	distributivité (double)	72	équations (système de deu équations du premier de	
cylindre (volume)	171	dividende	24	à deux inconnues)	78-80
cylindre droit	149	diviseur	11, 24	équations équivalentes	76
_		diviseur commun	16, 29	équilatéral (triangle)	114, 115
D		divisibilité (critères)	13	équiprobables (résultats)	39
débat mathématique (règles) 189	division	24	équivalence (règles)	77
débit	63	division (nombres décimaux	•	équivalentes (équations)	76
déca	33	division de fractions	31	estimation d'un résultat	12
décagone régulier	112	division de nombres relatifs		étapes de résolution	
déci	33	dixième	21, 33	d'un problème	182, 183
décimale (écriture)	21	dizaine	21, 33	étude systématique de cas	
décimale (numérotation)	21	dodécaèdre régulier	148	événement (aléatoire)	39
décimale (partie)	21	dodécagone régulier	112	exposant	32
décimaux (nombres)	21	double distributivité	72	expression fonctionnelle	47-51
décomposition en produit		droit (angle)	103	expression littérale	67
de facteurs premiers	14	droite	90	expression interact	01
décroissant (ordre)	11	droite graduée (représentati		F	
degré (angle)	101	de nombres décimaux)	21	face d'un polyèdre	144
degré d'un monôme	68	droite numérique	11	face latérale	145
degré d'un polynôme	70	droites parallèles	94, 95	facteur	24
degré d'une équation	76, 80	droites perpendiculaires	93, 94	facteur de linéarité	55
démarche scientifique	188	droites sécantes	92	facteur de proportionnalité	
demi-droite	90	E		facteurs premiers (décomp	
dénivellation	60	échelle	59	factorisation (polynômes)	74-75
dénominateur	27			fer de lance (propriétés)	124
dénominateur commun	30		21, 27, 33	figure (calculer l'aire)	168
développement d'un		écriture fractionnaire	27	figure plane	110
cylindre droit	149	écriture scientifique (notation scientifique)	35	figures géométriques	90-125
développement d'un		écriture simplifiée d'une sor		figures semblables	122
parallélépipède rectangle ou pavé droit	146	ou d'une différence de	11110	fonction (définir une)	47
développement d'un produit		nombres relatifs	19	fonction (definit drie)	48-52
développement d'un solide	143	égalité (expression littérale)	68	fonction affine (constructio	
développement de la pyram		égalité conditionnelle	76	représentation graphique	
développer (expression littér		égalité des rapports	56, 57	fonction constante	50
diagonale d'un polygone	111	élément absorbant	26	fonction cubique	53
diagramme cartésien	64	élément neutre	26	fonction homographique	54
diagramme circulaire	65, 66	ennéagone régulier	112	fonction linéaire	50
diagramme circulaire	00, 00	ensemble de solutions		fonction linéaire	55
(construction)	66	d'une équation	76	fonction quadratique	53
diagramme en barre	65	ensemble des nombres		fonction racine carrée	54
diagramme en bâtons	64		10, 21-27	fonctions	46-54
diagramme en colonnes	64	ensemble des nombres		formule (calcul de la mesu	
diagramme figuratif	65		10, 17-20	d'une grandeur)	83
diagrammes	64-66	ensemble des nombres	10 10 10	formules de calcul d'aires	165- 168
diamètre (cercle)	99		10, 12-16	formules de calcul de périr	
différence	23	ensemble des nombres rationnels Q	10, 27-31	formules de calcul	
direction d'un vecteur	128	ensemble des nombres	10, 21-01	de volumes	170-172
discriminant (équation)	81	réels R	10, 32	formule de Viète	81
disque	99	ensembles de nombres	10, 32	fraction	27
disque (aire)	167	entière (partie)	21	fraction d'un nombre (calci	
/					,

Traction irreductions 3,8 sol ongueur (university in fequence (probabilité) 3,8 sol ongueur (university in fequence (univer		00		450		4=
G Iosange (aire) 166 nombres rationnels 2.7 géamétrie dans l'espace 142-150 masse (unité) 124.125 nombres relatifs 1.7 giga 333 M masse (unité) 150 nontration scientifique 3.5 graphique (représentation d'une fonction) 46, 47, 49-51 masse volumique 62 numérateur 2.7 graphique (réprésentation d'une fonction) 46, 47, 49-51 médiane 119, 120 O H mature (rône, cylindre, prisme droit, pyramide) 145, 147, 149 médiane 119, 120 O hauteur (rénne, cylindre, prisme droit, pyramide) 145, 147, 149 mémbre carré (m') 157 métre carré (m') 157 mémbre carré (m') 157 d'un rapporteur 10 Outur rapporteur 10 Outur d'un triangle 10 Outur rapporteur 10 Outur rapporteur 10 Outur rapporteur 10 Outur rapporteur 102 Opposé (polynôme) 17 10 Opposé (polynôme) 17 10 Opposé (polynôme) 12 Auseur d'un triangle <th< td=""><td>fraction irréductible</td><td>29</td><td>longueur (unité)</td><td>156</td><td>nombres opposés</td><td>17</td></th<>	fraction irréductible	29	longueur (unité)	156	nombres opposés	17
Sange (propriétés) 124, 125 124, 125 124, 125 125, 125, 125, 125, 125, 125, 125, 125,	frequence (probabilite)	38, 39	•		•	
Segmétrie dans l'espace 142-150 M	c					
gramme (g)	_	140 150	losange (proprietes)	124, 125		
grandeur proportion 55 masses (unitie) 160 masses (unitie) 27 masses (unitie) 27 masses (unitie) 27 masses (unitie) 28 masses (unitie) 28 masses (unitie) 28 masses (unitie) 29 medianteur (propriete factors) 46, 47, 49-51 mediane 119, 120 mediantrice (unitie) 116 mediane 119, 120 mediane 119, 120 mediane 119, 120 mediane 119, 120 mediane 110, 120 mediane 119, 120 mediane 110, 120			AA.			
graphique (représentation 146, 47, 49-51 médiane 119, 120 numération décimale 21 21 numération décimale 21 21 22 numération décimale 21 23 24 24 25 25 25 25 25 25				160	'	
graphique (représentation d'une fonction) médiane 119, 120 numération décimale 21 H médiatrice d'un segment d'une fonction) 46, 47, 49-51 médiatrice (triangle) médiatrice d'un segment d'une fonction) 96, 97 numération décimale 21 H médiatrice (clintépes (triangle) mauteur (cône, cylindre, prisme d'une fauteur (pyramide) 145, 147, 149 médiane 130 Oblus (angle) 100 Austeur (cône, cylindre, prisme d'une (pyramide) 145, 147, 149 membre d'une équation mesurer un angle à l'aide d'un rapporteur doubles (angle) 102 cotadère régulier 112 cotage (norbres) 171 pappage (coté) 117 natureur d'un triangle 171 pappage (coté) 177 pappage (coté) 177 pappage (coté) 17 pappage (polynôme) 17 pappage (coté) 18 pappage (coté) 18 pappage (coté) 18 pappage (coté) 18			` '		, • ,	
d'une fonction) 46, 47, 49-51 médiatrice d'un segment médiatrices (triangle) 116 membre d'une équation 116 membre d'une équation 116 membre d'une parallèlogramme, trapèze) 155-167 mètre cube (m²) 156 mètre cube (m²) 157 mètre cube (m²) 158 mediceagone régulier 112 milliard 33 membre d'une segment 112 milliard 33 milliard d'un segment 112 milliard 33 milliard d'un segment 112 milliard 33 milliard 33 milliard d'un segment 112 milliard 33 milliard d'une 33 milliard d'une ponché (d'un point) 98,144 mortone de l'origine 48,50 monôme (addition) 113 monôme (addition) 114 monôme 115 monôme (addition) 114 monôme 115 monôme (addition)	-	55	•			
H médiatrices (triangle) méga 116 médiatrices (triangle) méga 0 dobus (angle) 10 hauteur (cône, cylindre, pyramide) 145, 147, 149 membre d'une équation médurin parallélogramme, trapa≥e) 165-167 mètre (m) membre d'une équation mesurer un angle à l'aide d'un rapporteur cotadère régulier cotogone régulier 112 mètre (m) 105 mètre (m)		47 49 ₋ 51		-	numeration decimale	21
Neuteur (cône, cylindre, prisme droit, pyramide) 145, 147, 149 hauteur (triangle, parallelogramme, trapèze) 165-167 hauteur d'un triangle 117-119 mètre carré (m²) 156 apposé (contres) 117 mètre carré (m²) 157 hectare (ha) 157 hectare (ha) 157 hecto 33 mileu d'un segment 92 hendécagone régulier 112 heptagone régulier 112 heptagone régulier 112 heptagone régulier 112 heptagone régulier 112 homodrétie (propriétés) 140 hyperbole 54 hypoténuse 173 milion d'un segment 173 millien d'un segment 174 millier 21 homodrétie (propriétés) 140 hyperbole 54 hypoténuse 175 homodrétie (propriétés) 140 hyperbole 54 hypoténuse 67,76 monôme (degre) 160 monôme (degre) 177 monôme (degre) 178 monôme (degre) 179 monôme (degre) 179 monôme (degre) 179 monôme (degre) 179 monôme (soustraction) 170 monôme (soustraction	a une foliotion, 40,	47, 45 51		-	0	
Auteur (cône, cylindre, prisme droit, pyramide) 145, 147, 149 membre d'une équation 76 octaèdre régulier 148 auteur (fraingle, paralleliogramme, trapèze) 165-167 mètre (m) 156 opposé (cotto) 117 opposé (cotto) 117 opposé (cotto) 117 opposé (cotto) 117 opposé (polynôme) 71 opposé (polynôme) 72 opposé (Н				-	100
droit, pyramide 145, 147, 149 mesurer un angle à l'aide viun rapporteur 102 opposé (cotté) 117 117 métre (arré (m²) 157 mètre carré (m²) 158 opposé (polynôme) 71 opposé (polynôme) 72 opposé (polynôme) 73 opposé (polynôme) 73 opposé (polynôme) 73 opposé (polynôme) 74 oppos		sme	•		` ` ` ,	
hauteur (friangle, parallélogramme, trapèze) 165-167 mètre (mr) mètre (mré (m²) 156 opposé (cottè) 117 nauteur d'un triangle 117-119 mètre carré (m²) 157 opposé (polymème) 71 nauteur face latérale (pyramide) 147 mètre cube (m²) 158 opposé spar le sommet (angles) 106 ordonnée (axe des) 48, 98 ordonnée (averables) 48, 50 ordonnée (averables) 48,			·	70		
parallélogramme, trapèze 165-167 matre ur d'un triangle 117-119 mètre caré (m²) 156 opposé (nombres) 17 17 nauteur face latérale (pyramide) 147 mètre cube (m²) 158 opposés (polynôme) 71 opposé (polynôme) 71 opposé (polynôme) 71 opposé (polynôme) 71 opposés (polynôme) 72 opposés (po	hauteur (triangle,		•	102		
hauteur d'un triangle 117-119 mêtre carré (m²) 157 opposé (polynôme) 71 hauteur face latérale (pyramide) 147 mêtre cube (m²) 158 opposés (polynôme) 71 hecto 33 mille of un segment 32 ordonnée (axe des) 48, 98 hendécagone régulier 112 mille 33 ordonnée (d'un point) 98, 144 hexagone régulier (fonction) 54 milliard an milliar 33 ordonnée (d'un point) 98, 144 homothétie (propriétés) 140 milliard immillier 21 ordonnée (axe des) 48, 98 homothétie (propriétés) 140 milliard immillier 21 ordonnée (ave des) 48, 98 hypoténuse 138-140 million 33 ordre décroissant 11 pyperbole (propriétés) 140 million immillion 33 ordre décroissant 11 identifiés remarquables 72, 75 modélisation 184 ordre décroissant 11 inage (fonction) 46 monôme (addition) 69 68 <td>parallélogramme, trapèz</td> <td>e) 165-167</td> <td></td> <td>156</td> <td></td> <td></td>	parallélogramme, trapèz	e) 165-167		156		
Mauteur face latérale (pyramide) 147	hauteur d'un triangle	117-119	` '	157		
mectare (ria) 157	hauteur face latérale (pyran	nide) 147	` <u>'</u>	158		
metic decagone régulier i 112 mille 33 ordonnée (axe des) 48, 98 nendécagone régulier i 112 mille 33 ordonnée (d'un point) 95, 144 nexagone régulier i 112 mille 33 ordonnée (d'un point) 98, 144 nexagone régulier i 112 milliardième 33 ordonnée d'i l'origine 48, 50 ordonnée d'i l'origine 48, 50 ordonnée d'i l'origine 48, 50 ordonnée (d'un point) 98, 144 nemorarphique (fonction) 54 millième 21, 33 million 33 ordonnée d'i l'origine 48, 50 ordonner un polynôme 70 order croissant 11 ordre décroissant 11 ordre décr	hectare (ha)	157	micro	33		-
mendecagone régulier 112 mille 33 ordonnée (d'un point) 98, 144	hecto	33	milieu d'un segment	92		
meptagone régulier 112 milliardième 33 ordonnée à l'origine 48, 50 ordonner au polynôme 70 ordonnée à l'origine 48, 50 ordonner au polynôme 70 ordonnée à l'origine 70 ordonnée 111 ordre 66 ordonnée 74, 75 origine 112 ordonnée 90 origine 10 origine 112 ordonnée 90 origine 10 origine 112 ordonnée 113 ordonnée 114 ordonnée 114 ordonnée 115 origine 184 origi		112	mille	33	, ,	,
miliardième 33 ordonner un polynôme 70 ordre décroissant 11		112	milliard	33	, , ,	
			milliardième	33		· ·
			millième	21, 33		
Nomerothetic (proprietes) 140			millier	21		
Nyperbole 173 millionième 33 millionième 74, 75 modefilsation 184 origine d'une demi-droite 98, 144 origine d'une demi-droite 99, 144 origine d'une repère 98, 144 origine d'une demi-droite 99, 144 origine d'une demi-droite 99, 144 origine d'une demi-droite 99, 144 origine d'une repère 98, 144 origine d'une demi-droite 90, 147 148 origine d'une repère 98, 144 origine d'une demi-droite 90, 147 148 origine d'une repère 98, 144 origine d'une repère 146 origine d'une repère 98, 144 origine d'une repè			million	33		
rypotentuse nise en évidence 74,75 origine d'une demi-droite 90 origine d'un repère 98, 144 origine d'un repère origine d'un parale prince délépipède rectangle parallélépipède rectangle (volume) 170 partie diétipipède rectangle parallélépipède rectangle parallélépipède rectangle (volume) 170 partie dietipite (recture le décime (argine d'un ectre deliépipède rectangle parallélépipède rectangle pa			millionième	33	, ,	
Image (fronction) 148 monôme (addition) 69 monôme (adgré) 68 monôme (multiplication) 69 monôme (partie littérale) 68 monôme (partie littérale) 68 monôme (adgré) 68 monôme (adgré) 68 monôme (multiplication) 69 parabole parallélépipède rectangle (volume) 170	hypoténuse	173	mise en évidence	74, 75	_	-
icosaèdre régulier 148 monôme (addition) 69 monôme (coefficient) 68 monôme (addition) 69 inage (fonction) 46 monôme (degré) 68 inconnue 67, 76 monôme (partie littérale) 68 parabole 75 parallélépipède rectangle 146 monôme (partie littérale) 68 parallélépipède rectangle 146 monôme (partie littérale) 68 parallélépipède rectangle (volume) 170 paralléles (droites) 94, 95 paralléles (droites) 94, 95 paralléles (droites) 94, 95 paralléles (droites) 166 paralléles (traites) 124, 125 partie (proportionnalité) 126 parallélogramme (aire) 166 parallélogramme (aire) 166 parallélogramme (propriétés) 124, 125 partie (proportionnalité) 128, 140 multiplication de fractions 31 passer d'une écriture décimale finie à une écriture fractionnaire 28 patron (développement d'un solide) 148 pavé droit 148 pavé droit (volume) 170 parallélogramme (propriétés) 140 multiplication de nombres relatifs 20 fractionnaire 28 passer d'une écriture décimale 28 patron (développement d'un solide) 143 pavé droit 146 pave droit (volume) 170 paralléles (droites) 128, 140 multiplication de nombres relatifs 20 fractionnaire 28 passer d'une écriture fractionnaire 28 passer d'une écriture décimale 128 pavé droit 146 pave droit (volume) 170 passer d'une écriture décimale 128 pavé droit (volume) 170 pave droit (volume) 170 pave droit (volume) 170 pente (déterminer la) 60 linéaire (fonction) 50 nombres entiers relatifs 17 pente (déterminer la) 60 linéaire (fonction) 55 nombres naturels 12 pente (déterminer la) 60 linéaire (fonction) 55 nombres naturels 12 pente négative 49 littéral (calcul) 67-75 nombres inverses 31 pente positive 49 littéral (calcul) 67-75 nombres inverses 31 pente positive 49 littéral calculi 49 pente positive 49 littéral calculi 40 pave droit 49 littéral calculi 49 littéral calculi 49 littéral calculi 49 litt			modélisation	184		
identités remarquables 72,75 monôme (addition) 69 monôme (coefficient) 68 inage (fonction) 46 monôme (coefficient) 69 inconnue 67,76 monôme (multiplication) 69 parabole parallélépipède rectangle (volume) 170 inscrit (cercle) 117 monôme (soustraction) 69 monôme (soustraction) 69 monôme (soustraction) 69 monôme (soustraction) 69 multiple ommun, ppmc 15 inverse (nombre) 32 multiple commun, ppmc 15 isocèle (trapèze) 123, 125 multiplication 24 multiplication 29 multiplication 29 multiplication 29 multiplication 40 fractions 31 isométrie (propriétés) 124, 140 isométrie (propriétés) 140 multiplication de nombres relatifs 20 multiplication de nombres relatifs 20 multiplication de polynômes 72 multiplication de polynômes 73 multiplication de polynômes 74 multiplication de polynômes 75 multiplication de p	1		monôme	68		
image (fonction) 46 monôme (degré) 68 inconnue 67,76 monôme (multiplication) 69 parallélépipède rectangle 146 parallélépipède rectangle (volume) 170 monôme semblable 69 parallélépipède rectangle (volume) 170 monôme semblable 12 parallèles (droites) 94, 95 parallèles (droites) 94, 95 parallèles (droites) 94, 95 parallèles (droites) 124, 125 partie (proportionnalité) 126 parallèles (droites) 126 parallèles (dr	•		, ,	69		
inconnue 67, 76 monôme (multiplication) 69 parabole 53 parabole indéterminée inégalité triangulaire inscrit (cercle) 117 monôme (soustraction) 69 parallélépipède rectangle (volume) 170 parallélépipède rectangle (volume) 170 monôme semblable 69 parallélépipède rectangle (volume) 170 monôme semblable 69 parallélépipède rectangle (volume) 170 monôme semblable 69 parallélépipède rectangle (volume) 170 paralléles (droites) 94, 95 multiple commun, ppmc 15 parallélegramme (aire) 166 parallélegramme (propriétés) 124, 125 partie (proportionnalité) 58 partie (proportionnalité) 58 multiplication (propriétés) 25 partie (proportionnalité) 58 multiplication de fractions 31 partie (propriétés) 124, 125 partie (proportionnalité) 58 multiplication de nombres 69 décimaux 24 sométrique (segment) 92 décimaux 24 sométriques (triangles) 105 multiplication de nombres relatifs 20 multiplication de polynômes 72 écriture fractionnaire à une sométriques (triangles) 120 multiplication de polynômes 72 écriture décimale (au segment) 48 partie (fractionnaire à une secriture fractionnaire à une sométriques (triangles) 120 multiplication de polynômes 72 écriture décimale (au segment) 48 partie (fractionnaire à une secriture fractionnaire à une secriture fractionnaire à une secriture décimale (au secriture fractionnaire à une secriture décimale (au secriture fractionnaire à une secriture décimale (au solide) 143 pavé droit (volume) 170 neutre (élément) 26 pentagone régulier 112 pavé droit (volume) 170 neutre (élément) 26 pentagone régulier 112 pente (déterminer la) 60 linéairité (facteur) 55 nombres entiers relatifs 17 pente (d'un terrain) 60 linéairité (facteur) 55 nombres entiers relatifs 17 pente d'une droite 48, 50 litre (l) 159 nombres inverses 31 pente positive 49 littérale (au soulce de transpet and parallélegramme (aire) parallélegra	•				P	
indéterminée 67 monôme (multiplication) 69 parallélépipède rectangle 146 monôme (partie littérale) 68 parallélépipède rectangle (volume) 170 monôme (soustraction) 69 parallélépipède rectangle (volume) 170 monôme (soustraction) 69 parallélépipède rectangle (volume) 170 monôme semblable 69 parallélégipède rectangle (volume) 170 monôme semblable 69 parallélegipamme (aire) 166 parallélegiramme (propriétés) 124, 125 partie (proportionnalité) 58 partie (proportionnalité) 68 partie (proportionnalité) 68 partie (proportionnalité) 58 partie (proportionnalité) 58 partie (proportionnalité) 58 partie (proportionnalité) 68 partie (proportionnalité) 58 pa	• ,				parabole	53
inégalité triangulaire inégalité triangulaire inscrit (cercle) 117 monôme (soustraction) 69 monôme (soustraction) 69 parallélépipède rectangle (volume) 170 monôme semblable 69 paralléles (droites) 94, 95 multiple 12 paralléles (droites) 94, 95 multiple commun, ppmc 15 paralléles (droites) 124, 125 multiple commun, ppmc 15 parallélegramme (aire) 166 parallélegramme (aire) 168 parallélegramme (aire					•	
Integrate transplanter in the parallel control (cercle) inscrit (cercle) inverse (nombre) 31 monôme semblable 69 paralléles (droites) 94, 95 inverse (nombre) 32 multiple commun, ppmc 15 parallélogramme (aire) 166 parallélogramme (aire) 166 parallélogramme (propriétés) 124, 125 partie (proportionnalité) 58 partie (propriétés) 140 multiplication de fractions 31 passer d'une écriture décimale finie à une écriture fractionnaire 28 isométrique (segment) 92 décimaux 24 passer d'une écriture fractionnaire 28 isométriques (angles) 105 multiplication de nombres relatifs 20 fractionnaire à une isométriques (triangles) 120 multiplication de polynômes 72 écriture décimale 28 patron (développement d'un solide) 143 kilo 33 narration de recherche 183, 188 pavé droit 146 naturels (nombres) 12 pavé droit (volume) 170 pente (déterminer la) 60 linéaire (fonction) 50 nombres 11 pente (déterminer la) 60 linéaire (fonction) 55 nombres entiers relatifs 17 pente (d'un terrain) 60 linéaire (facteur) 55 nombres anturels 12 pente d'une droite 48, 50 litre (l) 159 nombres inverses 31 pente positive 49 littéral (calcul) 67-75 nombres inverses 31 pente positive 49						
inverse (nombre) 31 multiple 12 paralleles (droites) 94, 95 irrationnel (nombre) 32 multiple commun, ppmc 15 parallele (droites) 166 paralleles (droites) 124, 125 parallel	-					170
irrationnel (nombre) 32 multiple commun, ppmc 15 parallelogramme (aire) 166 multiple commun, ppmc 15 parallelogramme (aire) 168 multiple commun, ppmc 15 parallelogramme (propriétés) 124, 125 partie (proporités) 124, 125 partie (proportionnalité) 58					parallèles (droites)	94, 95
irréductible (fraction) 29 multiplication 24 parallelogramme (proprietes) 124, 125 partie (proportionnalité) 58 partie (proportientalité à une écriture fractionnaire passer d'une écriture fractionnaire passer d'une écriture fractionnaire passer d'une écriture décimale passer d'une écriture decimale passer					parallélogramme (aire)	166
isocèle (trapèze) 123, 125 multiplication (propriétés) 25 multiplication de fractions 31 partie (proportionnalité) 58 multiplication de fractions 31 partie (proportionnalité) 58 multiplication de fractions 31 passer d'une écriture décimale finie à une écriture fractionnaire 28 décimaux 24 passer d'une écriture fractionnaire 28 décimaux 24 passer d'une écriture fractionnaire 28 passer d'une écriture fractionnaire à une écriture décimale passer d'une écriture fractionnaire à une fractionnaire à une isométriques (triangles) 120 multiplication de nombres relatifs 20 patron (développement d'un solide) 143 pavé droit 146 naturels (nombres) 12 pavé droit (volume) 170 neutre (élément) 26 pentagone régulier 112 pente (déterminer la) 60 linéaire (fonction) 55 nombres entiers relatifs 17 pente (d'un terrain) 60 linéaire (facteur) 55 nombres naturels 12 pente d'une droite 48, 50 litre (I) 159 nombres inverses 31 pente positive 49 littéral (calcul) 67-75 nombres inverses 31 pente positive 49					parallélogramme (propriété	s)124, 125
isocèle (triangle) 114, 115 isométrie isométrie 128, 140 isométrie (propriétés) 140 isométrique (segment) 92 isométriques (angles) 105 multiplication de nombres décimaux 24 passer d'une écriture fractionnaire 28 isométriques (angles) 105 multiplication de nombres relatifs 20 fractionnaire à une isométriques (triangles) 120 multiplication de polynômes 72 écriture décimale 28 patron (développement d'un solide) 143 kilo 33 narration de recherche 183, 188 pavé droit 146 naturels (nombres) 12 pavé droit (volume) 170 linéaire (fonction) 55 nombres entiers relatifs 17 pente (déterminer la) 60 linéarité (facteur) 55 nombres naturels 12 pente d'un monome 68 multiplication de fractions 31 pente positive 49 littéral (calcul) 67-75 nombres inverses 31 pente positive 49	,		•		partie (proportionnalité)	58
isométrie isométrie isométrie (propriétés) isométrie (propriétés) isométrique (segment) 92 décimaux 24 passer d'une écriture fractionnaire 28 décimaux 24 passer d'une écriture fractionnaire 28 isométriques (angles) 105 multiplication de nombres relatifs 20 fractionnaire à une isométriques (triangles) 120 multiplication de polynômes 72 écriture décimale 28 patron (développement d'un solide) 143 kilo 33 narration de recherche 183, 188 pavé droit 146 naturels (nombres) 12 pavé droit (volume) 170 neutre (élément) 26 pentagone régulier 112 linéaire (fonction) 50 nombres 11 pente (déterminer la) 60 linéarité (facteur) 55 nombres naturels 12 pente d'une droite 48, 50 litre (I) 159 nombres inverses 31 pente positive 49 littéral (calcul) 67-75 nombres inverses 31 pente positive					partie littérale d'un monôm	ie 68
isométrie (propriétés) isométrique (segment) isométrique (segment) isométrique (segment) isométriques (angles) isométriques (triangles) 105 multiplication de nombres relatifs 20 fractionnaire à une isométriques (triangles) 120 multiplication de nombres relatifs 20 multiplication de polynômes 72 écriture décimale 28 patron (développement d'un solide) 143 kilo 33 narration de recherche 183, 188 pavé droit 146 naturels (nombres) 12 pavé droit (volume) 170 L Inéaire (fonction) 50 nombres 11 pente (déterminer la) 60 linéairité (facteur) 55 nombres naturels 17 pente (d'un terrain) 60 linéarité (facteur) 55 nombres naturels 12 pente d'une droite 48, 50 litre (I) 159 nombres inverses 31 pente positive 49	, -				•	
isométrique (segment) isométrique (segment) isométriques (angles) 105 multiplication de nombres relatifs 20 multiplication de polynômes 72 écriture décimale patron (développement d'un solide) 143 kilo 33 narration de recherche naturels (nombres) 12 pavé droit pavé droit 146 naturels (nombres) 12 pavé droit (volume) 170 linéaire (fonction) 50 nombres 11 pente (déterminer la) 60 linéarité (facteur) 55 nombres anturels 159 nombres décimaux 24 passer d'une écriture fractionnaire à une écriture décimale patron (développement d'un solide) 143 pavé droit 146 pavé droit (volume) 170 pentagone régulier 111 pente (déterminer la) 60 linéarité (facteur) 55 nombres entiers relatifs 17 pente (d'un terrain) 60 linéarité (facteur) 55 nombres naturels 12 pente d'une droite 48, 50 litre (I) 159 nombres inverses 31 pente positive 49				69		
isométriques (angles) 105 multiplication de nombres relatifs 20 fractionnaire à une sométriques (triangles) 120 multiplication de polynômes 72 écriture décimale 28 patron (développement d'un solide) 143 kilo 33 narration de recherche 183, 188 pavé droit 146 naturels (nombres) 12 pavé droit (volume) 170 neutre (élément) 26 pentagone régulier 112 linéaire (fonction) 50 nombres 11 pente (déterminer la) 60 linéaire (fonction) 55 nombres entiers relatifs 17 pente (d'un terrain) 60 linéarité (facteur) 55 nombres aturels 12 pente d'une droite 48, 50 litre (I) 159 nombres inverses 31 pente positive 49 littéral (calcul)			•	24		28
isométriques (triangles) 120 multiplication de polynômes 72 écriture décimale 28 Patron (développement d'un solide) 143					•	
KNd'un solide)143kilo33narration de recherche naturels (nombres)183, 188pavé droit (volume)170Lneutre (élément)26pentagone régulier112linéaire (fonction)50nombres11pente (déterminer la)60linéaire (fonction)55nombres entiers relatifs17pente (d'un terrain)60linéarité (facteur)55nombres naturels12pente d'une droite48, 50litre (I)159nombres décimaux21pente négative49littéral (calcul)67-75nombres inverses31pente positive49			•			28
KNd'un solide)143kilo33narration de recherche naturels (nombres)183, 188pavé droit146Lneutre (élément)26pentagone régulier112linéaire (fonction)50nombres11pente (déterminer la)60linéaire (fonction)55nombres entiers relatifs17pente (d'un terrain)60linéarité (facteur)55nombres naturels12pente d'une droite48, 50litre (I)159nombres décimaux21pente négative49littéral (calcul)67-75nombres inverses31pente positive49			maniphodilon de perymente			20
Lnaturels (nombres)12pavé droit (volume)170Lneutre (élément)26pentagone régulier112linéaire (fonction)50nombres11pente (déterminer la)60linéaire (fonction)55nombres entiers relatifs17pente (d'un terrain)60linéarité (facteur)55nombres naturels12pente d'une droite48, 50litre (I)159nombres décimaux21pente négative49littéral (calcul)67-75nombres inverses31pente positive49	K		N			143
Lnaturels (nombres)12pavé droit (volume)170Lneutre (élément)26pentagone régulier112linéaire (fonction)50nombres11pente (déterminer la)60linéaire (fonction)55nombres entiers relatifs17pente (d'un terrain)60linéarité (facteur)55nombres naturels12pente d'une droite48, 50litre (I)159nombres décimaux21pente négative49littéral (calcul)67-75nombres inverses31pente positive49	kilo	33		183, 188	· ·	146
linéaire (fonction) 50 nombres 11 pente (déterminer la) 60 linéaire (fonction) 55 nombres entiers relatifs 17 pente (d'un terrain) 60 linéarité (facteur) 55 nombres naturels 12 pente d'une droite 48, 50 litre (I) 159 nombres décimaux 21 pente négative 49 littéral (calcul) 67-75 nombres inverses 31 pente positive 49			naturels (nombres)		pavé droit (volume)	170
linéaire (fonction)55nombres entiers relatifs17pente (d'un terrain)60linéarité (facteur)55nombres naturels12pente d'une droite48, 50litre (l)159nombres décimaux21pente négative49littéral (calcul)67-75nombres inverses31pente positive49	L		neutre (élément)	26	pentagone régulier	112
linéarité (facteur)55nombres naturels12pente d'une droite48, 50litre (I)159nombres décimaux21pente négative49littéral (calcul)67-75nombres inverses31pente positive49	linéaire (fonction)	50	nombres	11	pente (déterminer la)	60
linéarité (facteur)55nombres naturels12pente d'une droite48, 50litre (I)159nombres décimaux21pente négative49littéral (calcul)67-75nombres inverses31pente positive49	linéaire (fonction)	55	nombres entiers relatifs	17	pente (d'un terrain)	60
littéral (calcul) 67-75 nombres inverses 31 pente positive 49	linéarité (facteur)	55	nombres naturels	12	pente d'une droite	48, 50
	litre (I)	159	nombres décimaux	21	pente négative	49
littérale (expression) 67 nombres irrationnels 32 périmètre d'une figure 163	littéral (calcul)	67-75	nombres inverses	31	pente positive	49
	littérale (expression)	67	nombres irrationnels	32	périmètre d'une figure	163

	163, 164	puissances	32-35	résolution d'une équation du deuxième degré à	
périmètres de surfaces usuel		puissances (propriétés)	34	une inconnue	81, 82
périodique (nombre)	27 93, 94	puissance de dix	33	résultats équiprobables	39
perpendiculaires (droites) perspective artistique	143	pyramide (valume)	147	résultats favorables	39
perspective artistique perspective cavalière	143	pyramide (volume)	170	résultats possibles	39
perspective cavaliere perspective isométrique	142	pyramide régulière	147	rhomboïde (propriétés)	124, 125
pgdc (plus grand diviseur	142	Pythagore (réciproque)	174, 175	rotation	134-137
commun)	16	Pythagore (théorème)	173-175	rotation (propriétés)	140
plat (angle)	103	Q			
plein (angle)	103	quadratique (fonction)	53	S	
plan	97	quadralique (lonction) quadrilatère	123-125	schéma	184
point de fuite	142	quadrilatères (classement)	125-125	sécantes (droites)	92
points alignés	90	quadrilatères particuliers	123, 124	seconde (s)	161
polyèdre	144	quintal (q)	160	secteur circulaire	100
polyèdres de Platon	148	quotient	24, 27	secteur circulaire (aire)	167
polyèdres réguliers	148	quotient	27, 21	segment	90
polyèdres réguliers convexes	148	R		segment (milieu)	92
polygone convexe ou		racine carrée	36	segment isométrique	92
non convexe	111	racine carrée (fonction)	54	segment orienté	128
polygone inscrit dans un cero		racine cubique	36	semblable (monôme)	69
1 - 75	110-114	racines	36-37	semblables (triangles)	121
. , , ,	112, 113	racines (propriétés)	36, 37	sens d'un vecteur	128
polynôme	69	rapport d'homotétie	138	sens de rotation	134
polynôme (addition)	70	rapporteur	102	série statistique	38
polynôme (degré)	70	rationnel (nombre)	27	sexagésinal (système)	161
polynôme (réduction)	70	rayon (boule)	150	si alors	190
polynôme (soustraction)	71	rayon (cercle)	99	similitude	141
polynôme opposé	71	rayon (sphère)	150	simplification d'écriture (somme ou différence	
polynômes (multiplication)	72 58	réciproque (d'un énoncé)	190	de nombres relatifs)	19
pour-cent (%)	56 58	réciproque du théorème		simplification de fractions	29
pour-mille (‰) pourcentage	58	de Pythagore	174, 175	situation aléatoire	38
pourcentage (calculer un)	58	rectangle (périmètre et aire)	164, 166	solide	143, 144
ppmc (plus petit multiple	50	rectangle (propriétés)	124, 125	solide (calculer le volume)	172
commun)	15	rectangle (trapèze)	124	solide (volume)	169-172
,	189, 190	rectangle (triangle)	114, 115	solutions d'une équation	76
priorités des opérations	26, 27	réduction d'un polynôme	70	somme	22
prisme droit	145	réduction d'une figure	139	somme (propriété)	56, 57
prisme droit (volume)	170	réduction d'une figure	59, 122	somme d'une expression li	ttérale 71
probabilité	38-40	réduire (expression littérale)		somme des angles d'un tria	angle 116
problème (définition)	182	réel (nombre)	32	sommet d'un angle	101
problèmes et résolutions	182	règle d'équivalence	77	sommet d'un polyèdre	144
produit	24	règles du débat mathémation		sommet d'un polygone	110
produit (propriété)	56, 57	relatif (nombre)	17	soustraction	23
produit d'une expression litté		rentrant (angle)	103	soustraction de fractions	30
produits remarquables	72, 75	repérage d'un point	4 4 4	soustraction de monômes semblables	69
proportionnalité	55-63	dans l'espace	144	soustraction de nombres	09
proportionnalité (résoudre un	57	repérage d'un point dans le repère (repérage d'un point		décimaux	23
problème) proportionnelles (grandeurs)	57 55	représentation d'un objet	90, 144	soustraction de nombres re	
propriété de la somme	33	dans l'espace	142	soustraction de polynômes	71
(proportionnalité)	56, 57	représentation graphique	172	sphère	150
propriété du produit	,	(diagrammes)	64-66	sphère (aire)	167
(proportionnalité)	56, 57	représentation graphique		statistique (série)	38
propriétés de l'addition		(fonction)	46, 47	stratégie	183
et multiplication	25	résolution d'équations	77-82	substitution (résolution	
puissance d'exposant négati		résolution d'un problème		d'équation)	79
puissance d'exposant positif	32	(étapes)	182, 183	surface	163-167

Index

symétrie axiale	130, 131	trapèze (propriétés)	123, 125
symétrie axiale (propriétés)	140	trapèze isocèle (propriétés)	123, 125
symétrie centrale (propriété	,	trapèze rectangle	124, 125
symétrie centrale	132, 133	(propriétés)	165
système (sexagésinal)	161	triangle (aire)	115
système d'équation	70.00	triangle (classement)	
(résolution)	79, 80	triangle équilatéral	114, 115
système de deux équations		triangle isocèle	114, 115
du premier degré à deux inconnues	78-80	triangle isocèle rectangle	115
système décimal	11	triangle rectangle	114, 115 ire) 173
système métrique	156-158	triangle rectangle (vocabula	,
systeme metrique	130-130	triangles	114-121
Т		triangles isométriques	120
tableau de proportionnalité	55, 56	triangles particuliers	114
tableau de proportionnante	33, 36 47	triangles semblables	121
tangente	100, 101	troncature	22
tâtonnement réfléchi	185	U	
temps (unité)	161, 162	•	150
,	33	unité d'aire (convention)	158
tera (billion)		unités de capacité (et de volume)	158, 159
termes	22, 23 148	unités de masse	160
tétraèdre régulier		unités d'aire	157, 158
Thalès (cercle)	109 175	unités de longueur	157, 156
Thalès (théorème)		unités de longueur (convers	
théorème de Pythagore	173-175	unités de mesure	156
théorème de Thalès	175	unités de temps	161, 162
théorèmes	173-176	unités de temps	101, 102
tonne (t)	160	(conversion)	161, 162
tout (proportionnalité)	58	unités de volume	.0., .02
tracer la droite parallèle à	nt	(et de capacité)	158, 159
une droite donnée passa par un point	nı 95	unités de volume,	,
tracer la droite perpendicula		unité de capacité (conver	sion) 160
à une droite passant par	anc		
un point donné	95	V	
tracer la médiatrice d'un se	gment 97	valeur approchée	22
tracer une hauteur d'un	O .	variable	67
triangle avec une équerre	118	vecteur	128
transformation du plan	126	vérification et preuves	189, 190
transformation du plan		Viète (formule)	81
(propriétés)	126-127	vitesse	61
transformations	126-141	volume (conversion)	159
translation	129-130	volume (unité)	158
translation (propriétés)	140	volume d'un solide	169-172
trapèze (aire)	167	volume des solides usuels	170, 171

